
GRADE 10 ESSENTIALS MATH

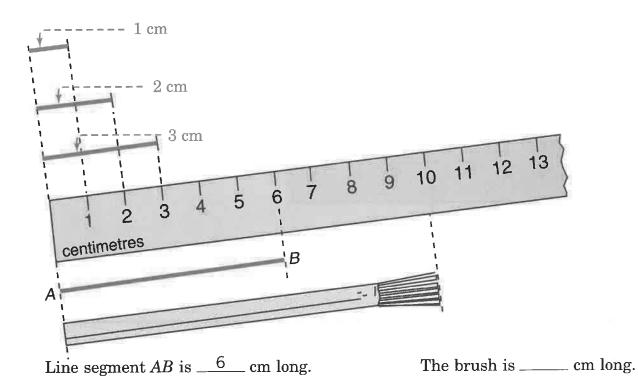
METRIC CONVERSIONS WORKBOOK

EXTRA PRACTICE FOR CONVERTING BETWEEN METRIC MEASURES

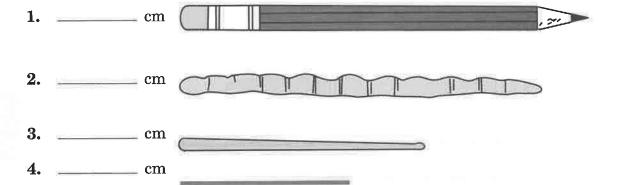
Lesson 1 Centimetre (cm)

The stick is $_{5}$ cm long.

The nail is _____ cm long.


Find the length of each picture to the nearest centimetre.

- 1. ____ cm ____
- 2. ____ cm
- 3. _____ cm ____
- 4. ____ cm
- **5.** ____ cm
- 6. _____ cm


Use a ruler to draw a line segment for each measurement.

- **7.** 4 cm
- 8. 9 cm
- **9.** 11 cm
- **10.** 13 cm

Lesson 2 More Centimetres

Find the length of each picture to the nearest centimetre.

Use a ruler to draw a line segment for each measurement.

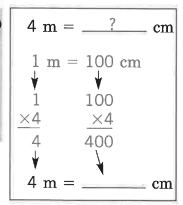
- **6.** 6 cm
- 7. 4 cm
- 12 cm

5. _____ cm

Lesson 3 Units of Length

$$600 \text{ cm} = \frac{?}{100 \text{ m}} \text{ m}$$

$$100 \text{ cm} = 1 \text{ m}$$


$$\frac{6}{100 \text{ 600}}$$

1 centimetre (cm) = 10 millimetres (mm)

1 metre (m) = 100 cm

1 m = 1000 mm

1 kilometre (km) = 1000 m

Complete the following.

 \boldsymbol{a}

1.
$$3 m =$$
_____ cm

$$3 m = \underline{\qquad} cm$$

2.
$$2 \text{ m} = \underline{\hspace{1cm}} \text{mm}$$

3.
$$5 \text{ m} = \underline{\qquad} \text{ cm}$$

6.
$$7 \text{ m} = \underline{\qquad} \text{ cm}$$

7.
$$9 \text{ m} = \underline{\qquad} \text{mm}$$

8.
$$15 \text{ cm} = \underline{\qquad} \text{mm}$$

9.
$$600 \text{ cm} = \underline{\qquad} \text{m}$$

12.
$$10 \text{ m} = \underline{} \text{ cm}$$

b

$$12\ 000\ m = ____ km$$

$$5 \text{ m} = \underline{\qquad} \text{ cm}$$

$$7 \text{ m} = \underline{\qquad} \text{mm}$$

$$6 \text{ km} = \underline{\qquad} \text{m}$$

$$7000 \text{ m} =$$
_____km

$$9 m = _{cm} cm$$

$$5 \text{ km} = \underline{\qquad} \text{m}$$

$$500 \text{ cm} = _{m} \text{ m}$$

$$9 \text{ km} = _{m}$$

Lesson 3 Problem Solving

Solve each problem.

1.	Mr. Jefferson is 2 m tall. What is his height in centimetres?	1.	
	His height is cm.		
2.	In baseball the distance between home plate and first base is 27 m. What is this distance in centimetres?	2.	3.
	The distance is cm.		
3.	Jeromy has 150 m of kite string. How many centimetres of kite string does he have?		
	He has cm of kite string.		
4.	A trench is 2 m deep. What is the depth of the trench in centimetres?	4.	5.
	The trench is cm deep.		
5.	There are 1000 m in a kilometre. How many centimetres are there in a kilometre?		
	There are cm in a kilometre.		
6.	One of the pro quarterbacks can throw a football 54 m. How many centimetres can he throw the football?	6.	7.
	He can throw the football cm.		
7.	Marcena has 8 m of ribbon. How many centimetres of ribbon does she have?		
	She has cm of ribbon.		
8.	A rope is 3 m long. What is the length of the rope in centimetres?	8.	9.
	The rope is cm long.		
9.	A certain car is 2 m wide. What is the width of the car in millimetres?		
	The car is mm wide.		1

Lesson 6 Capacity

$$6 L = ? mL
1 L = 1000 mL
1 1000
×6 ×6
6 6000
V V ML$$

1 litre (L) = 1000 millilitres (mL)

1 kilolitre (kL) = 1000 L

 $12\ 000\ L = \frac{?}{kL}$ $1000\ L = 1\ kL$ $1000)12\ 000$ $12\ 000\ L = \underline{L}$

Complete the following.

 \boldsymbol{a}

1. 6000 mL = _____ L

$$12 L = \underline{\qquad} mL$$

b

2. 4000 mL =_____L

$$8 \text{ kL} = \underline{\hspace{1cm}} \text{L}$$

3. 8000 L = _____ kL

$$6 L = \underline{\qquad} mL$$

4. $8 L = _{mL}$

$$7000 L = ____ kL$$

5. $10 L = _{mL}$

$$9000~\text{mL} = \underline{\hspace{1cm}} L$$

6. 5 kL = L

7.
$$10 \text{ kL} =$$
_____L

30 000
$$L = _{kL}$$

8.
$$2000 L = kL$$

9.
$$10 L = _{mL}$$

10.
$$3000 L = ___kL$$

11.
$$16 L = mL$$

$$28 L = \underline{\qquad} mL$$

12.
$$10\ 000\ mL =$$
_____L

$$16 \text{ kL} = \underline{\qquad} \text{ L}$$

Lesson 6 Problem Solving

Solve each problem. 2. 1. There are 6 L of lemonade in a picnic cooler. How 1. many 1000-mL containers can be filled by using the lemonade in the cooler? containers can be filled. 2. The cooling system on a car holds 16 L. How many millilitres does it hold? It holds _____ mL. 3. In problem 2, how many millilitres do five cooling systems hold? They hold _____ mL. 4. There are 376 L of milk delivered to the store. How many millilitres of milk is this? It is _____ mL of milk. 5. How many litres of water would be needed to fill a 6. 10-kL aquarium? _____ L would be needed. 6. The lunchroom served 16 L of milk at lunch. How many millilitres of milk was this? It was _____ mL of milk. 8. 7. There are 1200 mL of liquid in a container. How many 100-mL jars can be filled by using the liquid in the container? _____ jars can be filled. 8. There are 6 L of bleach in a container. How many millilitres of bleach are in the container? There are _____mL of bleach in the container.

Lesson 7 Mass

Tonne (t), milligram (mg), gram (g), and kilogram (kg) are units of mass.

$$5 \text{ kg} = \frac{?}{1 \text{ kg}} \text{ g}$$

$$1 \text{ kg} = 1000 \text{ g}$$

$$1 \quad 1000$$

$$\frac{\times 5}{5} \quad \frac{\times 5}{5000}$$

$$\frac{1}{5} \quad \frac{\times 5}{5000}$$

$$\frac{1}{5} \quad \frac{\times 5}{5000}$$

$$\frac{1}{5} \quad \frac{1}{5000} \quad \text{g}$$

Complete the following.

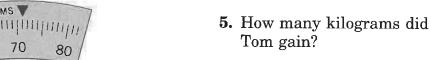
b

1.
$$2 \text{ kg} =$$
 g

$$6 t =$$
 kg

2.
$$2 t =$$
 kg

$$4 \text{ kg} = \underline{\qquad} \text{g}$$


3.
$$7 g = mg$$

$$5 t =$$
 kg

4. Tell the mass shown on each scale.

Tom's mass this year KILOGRAMS V hudundundund 60 70 80 ____ kg

Tom gained ____ kg since last year.

Complete the table.

	Tonnes	Kilograms	Grams	Milligrams
6.		1000		
7.	4			
8.	7		7 000 000	

Lesson 7 Problem Solving

So	lve each problem.	
1.	Mrs. Wilson bought a 6-kg turkey. What is the mass of the turkey in grams?	1.
	The mass of the turkey is g.	
2.	The Garden Club grew 2 t of watermelons to sell. How many kilograms of watermelons did they grow?	2.
	The club grew kg of watermelons.	
3.	Mason bought 50 kg of apples to make applesauce. How many grams of apples did he buy?	3.
	Mason bought g of apples.	
4.	Brett bought a truck that can hold 25 t of stone. How many kilograms of stone could the truck hold?	4.
	The truck can hold kg of stone.	
5.	Jack and Beth picked 163 kg of blueberries. How many grams of blueberries did they pick?	5.
	They picked g of blueberries.	
6.	An African elephant can have a mass of 6 t. How many kilograms can be the mass of an African elephant?	6.
	An African elephant can have a mass of kg.	

Lesson 8 Time

Second, minute, hour, and day are units of time.

$$1 \text{ minute (min)} = 60 \text{ seconds (s)}$$

$$1 \text{ hour (h)} = 60 \text{ min}$$

$$1 \text{ day} = 24 \text{ h}$$

$$3 \min = \frac{?}{s}$$

$$1 \min = 60 \text{ s}$$

$$1 \min = 60 \text{ s}$$

$$1 \min = 80 \text{ s}$$

Complete the following.

a

1.
$$2 h = \underline{\hspace{1cm}} min$$

2.
$$2 \text{ days} =$$

3.
$$5 \min =$$
 s

5.
$$5 \text{ days} =$$
_____h

9.
$$6 h = \underline{\hspace{1cm}} min$$

10.
$$15 \min =$$
____s

12.
$$4 h = \underline{\hspace{1cm}} min$$

15.
$$15 h = \underline{\hspace{1cm}} min$$

b

$$8 \min =$$
____s

$$5 h = \underline{\qquad} min$$

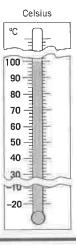
$$6 \min =$$
 s

$$8 h = \underline{\qquad} min$$

$$3 h = \underline{\qquad} min$$

$$7 \min = \underline{} s$$

Lesson 9 Temperature (Celsius)


Use degrees Celsius to measure the temperature. Read the top of the liquid in the thermometer to tell the temperature. Write 25°C.

In degrees Celsius, water freezes at 0°C.

In degrees Celsius, water boils at 100°C.

Your normal body temperature is about 37°C.

Use a minus sign to show temperatures colder than 0°C.

Record the temperature shown on each thermometer.

1.

 $^{\circ}C$

°C

 $^{\circ}$ C

2. Water freezes at 0°C and boils at 100°C. What is the difference between those two temperatures?

The difference is _____ °C.

°C

3. At 6 A.M. the temperature was 13°C. The high temperature was expected to be 19°C warmer than that. What was the high temperature expected to be?

°C was the expected high temperature.

4. During a windy day, the windchill was -14° C. With no wind, the temperature would have been 16°C warmer. What would have been the temperature with no wind?

°C. The temperature would have been _____