

Probability: Combinations

Name:	Date:

Solve the following probability word problems.

- (1) How many different four-person teams can be created from a classroom of twelve students?
- (5) The baseball team has thirteen players, but only eight can be on the field at one time. How many different groups can be formed?
- (2) Four names are to be picked from a hat to be on a team. There are a total of fourteen names in the hat. How many different combinations of names can be picked?
- (6) There are eleven different marbles in a jar. How many ways can you take seven from the jar?
- (3) A painter was carrying six pails of different colored paint and dropped four of them, making a big mess. How many combinations of colors could he have spilled?
- (7) Twelve people were trying to be one of the first five callers to a radio station. How many different sets of people could have succeeded?

- (4) There are eight different prizes hidden in a box, and you can pick four of them without looking. How many combinations of prizes are there?
- (8) Fifteen insane shoppers were rushing to grab one of the last four Elmo toys. How many different sets of shoppers could have come away with a toy?

Probability: Combinations

ANSWER KEY

Solve the following probability word problems.

(1) How many different four-person teams can be created from a classroom of twelve students?

$$nCk = \frac{/2!}{4!(/2-4)!} = 495$$

(2) Four names are to be picked from a hat to be on a team. There are a total of fourteen names in the hat. How many different combinations of names can be picked?

$$nCk = \frac{/4!}{4!(/4-4)!} = 1,001$$

(3) A painter was carrying six pails of different colored paint and dropped four of them, making a big mess. How many combinations of colors could he have spilled?

$$nCk = \frac{6!}{4!(6-4)!} = 15$$

(4) There are eight different prizes hidden in a box, and you can pick four of them without looking. How many combinations of prizes are there?

$$nCk = \frac{8!}{4!(8-4)!} = 70$$

(5) The baseball team has thirteen players, but only eight can be on the field at one time. How many different groups can be formed?

$$nCk = \frac{/3!}{\delta!(/3-\delta)!} = 1,287$$

(6) There are eleven different marbles in a jar. How many ways can you take seven from the jar?

$$nCk = \frac{II!}{7!(II - 7)!} = 330$$

(7) Twelve people were trying to be one of the first five callers to a radio station. How many different sets of people could have succeeded?

$$nCk = \frac{/2!}{5!(/2-5)!} = 792$$

8) Fifteen insane shoppers were rushing to grab one of the last four Elmo toys. How many different sets of shoppers could have come away with a toy?

$$nCk = \frac{15!}{4!(15-4)!} = 1,365$$