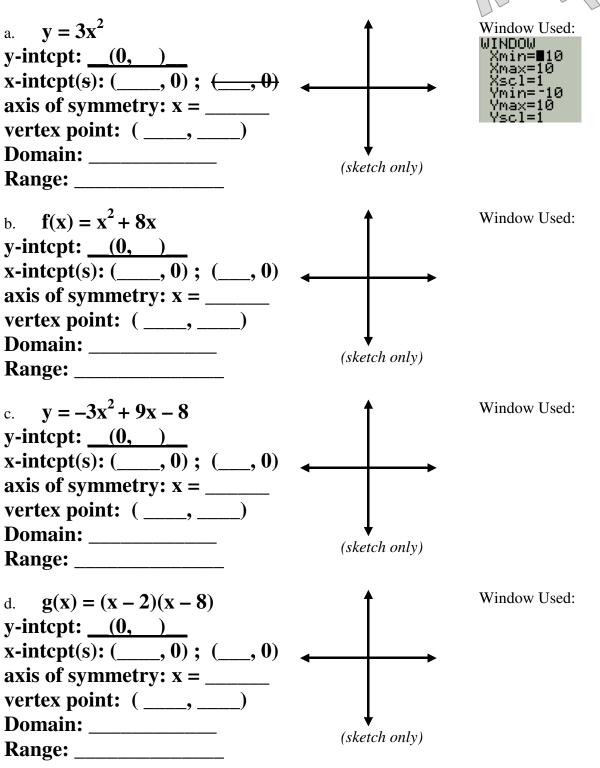

## **GRADE 11 APPLIED**<br/>UNIT A QUADRATICS<br/>ASSIGNMENT – VERTICES AND INTERCEPTSName<br/>Date:1. There are lots of significant points to a quadratic function.Image: Comparison of the second sec



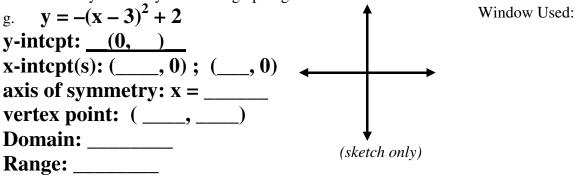
2. There is always a single y-intercept, *up to* two x-intercepts, and always a vertical line of symmetry that runs down through the vertex.

3. For the graphs of the two quadratic functions at the right give their significant points:






assume the significant points are at integer values


gr11applied\_A\_SigPtsAssgt.doc

4. Given the following quadratic functions use the TI-83 Graphing Calculator to sketch them and to state the window used, y-intercept, x-intercepts, axis of symmetry and vertex and Domain and Range. Round values to two decimal places if necessary. (or wow me with fractions!)



| d. $y = (x + 2)(x + 5)$<br>y-intcpt: <u>(0, )</u><br>x-intcpt(s): ( <u>, 0)</u> ; ( <u>, 0)</u><br>axis of symmetry: $x =$ <u></u><br>vertex point: ( <u>,</u> )<br>Domain: <u></u> | $\overset{\uparrow}{\longleftarrow}$ | Window Used: |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|--------------|
| Range:                                                                                                                                                                              | (sketch only)                        |              |
| e. $y = -(x + 2)^2$<br>y-intcpt: <u>(0, )</u><br>x-intcpt(s): (, 0) ; (, 0)<br>axis of symmetry: $x = $<br>vertex point: (,)<br>Domain:<br>Range:                                   | (sketch only)                        | Window Used: |
| f. $y = (x - 3)^2 + 2$<br>y-intcpt: <u>(0, )</u><br>x-intcpt(s): (, 0) ; (, 0)<br>axis of symmetry: $x = $<br>vertex point: (,)<br>Domain:<br>Range:                                | (sketch only)                        | Window Used: |

Can you start to see some patterns then? In pre-Calc you would learn the patterns, in Applied Math is it only necessary to use the graphing tool.



h.  $y = 2(x + 4)^2 - 10$ Window Used: y-intcpt: <u>(0, )</u> x-intcpt(s): (\_\_\_\_, 0); (\_\_\_\_, 0) axis of symmetry: x = vertex point: ( \_\_\_\_\_, \_\_\_\_) Domain: \_\_\_\_\_ (sketch only) Range:  $h(t) = -5t^2 + 30t + 2$ Window Used: i. y-intcpt: (0, ) x-intcpt(s): (\_\_\_\_, 0); (\_\_\_, 0) axis of symmetry: x = \_\_\_\_\_ vertex point: ( \_\_\_\_, \_\_\_) Domain: \_\_\_\_\_ (sketch only) Range:

5. Word Problem. City traffic at Higgins and Main in the morning rush hour is modeled pretty well by the quadratic equation  $\mathbf{n}(t) = -10t^2 + 165t - 600$  where  $\mathbf{n}(t)$  is the number of cars per minute as a function of the time of the morning *t*.

a. what is the vertex of the traffic function?

b. the vertex represents the peak traffic flow at the peak time.

(1) what is the peak time of traffic: \_\_\_\_\_ (hours: mins AM)

(2) what is the flow of traffic at the peak time? \_\_\_\_\_ (cars per min)

c. according to this 'formula' that 'models' traffic flow at morning rush hour when is traffic flow at zero cars per minute?