## MY! GRADE 12 APPLIED COURSE REFERENCE NOTES (copy them if you wanth) **UNITS A & E- PROBABILITY, PERMUTATIONS & COMBINATIONS**

Fundamental Counting Principle (FCP): If one event can occur in 'a' ways, a second event in 'b' ways, a third event in 'c' ways, and so on, then the number of ways that all events can occur one after the other is the product  $a^*b^*c...Eq$ : number of license plates we can make <u>26\*26\*26\*10\*10\*10</u>. Watch if *repetitions* are allowed or not.

**Permutations:** Order does matter! 1<sup>st</sup>, 2<sup>nd</sup>, 3<sup>rd</sup> in a race of 12 runners. <u>12\*11\*10</u> possible choices. Or  ${}_{12}P_3$ .

Counting Non-Distinguishable Objects: 4 Red balls, 2 Green Balls. Number of distinguishable ways to arrange the 6 balls

with 4 red and 2 green balls is  $\frac{6!}{4!2!}$ . Just like arranging YES and Nos. If only two different objects then = Combo.

Combinations. Arrangements of objects where order does not matter. Selecting committees of people (no special positions or rewards), Lotto 6/49, etc.

*Eg*: how many ways can a committee of three people be formed from 12 people.  $12C_3 = \frac{12!}{(12-3)!3!} = 220$ 

 $Prob(A) = P(A) = \frac{\# of \ Favoured \ Outcomes}{\# of \ Total \ Possible \ Outcomes}$ ; eg: **Prob(Draw a King**) = 4/52. //**Sample space**: the list of all possible

outcomes. Use a tree or table. // Outcome: the result of one trial of an experiment (eg: flipping one coin has only H or T outcome)// Event: A set of outcomes. Eg: rolling two dice, an event might be the set of outcomes where doubles were rolled. **<u>Complement</u>**. The probability of an event happening is "1 – the probability it won't happen". Complement of event A is

A. So  $P(\bar{A}) = 1 - P(A)$ . At least once Probs: Prob(A's  $\geq 1$  time) = 1 - P(no A's)**ODDS.** Odds in favour = favourable:not favourable; eg. wins : losses. Odds Against = not favourable : favourable

**<u>Formulas</u>**: Factorial: 6! = 6\*5\*4\*3\*2\*1; Permutation:  ${}_{n}P_{r} = \frac{n!}{(n-r)!}$ ; Combination:  ${}_{n}C_{r} = \frac{n!}{(n-r)!r!}$ 

Multiplying Probabilities: For successive events. Keyword: AND. Often one probability is dependent on the first. Often indicates whether something is drawn and with replacement or not.

Independent example: Let A be event of being hit by bus. Let B be event of winning lottery. Both are independent events. Say P(A) = 0.01, and P(B) = 0.01. Prob of getting hit by a bus and winning the lottery = Prob(A AND B)=

P(A)\*P(B)=0.01\*0.01=0.0001. Dependent example. Standard deck of cards. Probability of drawing a King then a Queen without replacing the first card. Let:  $K_1$  = event of drawing King first draw;  $Q_2$  = event of drawing Queen second. P(K<sub>1</sub> and then  $\mathbf{Q}_2$ ) = P(K<sub>1</sub>)\*P( $\mathbf{Q}_2 | \mathbf{K}_1$ )= $\frac{4}{52}$ \* $\frac{4}{51}$ = $\frac{4}{663}$ = 0.60% Adding Probabilities. For compound events, multiple events. *Keyword*: OR

*Eg*: Let  $\mathbf{K} = \mathbf{Set}$  of all Kings. Let  $\mathbf{S} = \mathbf{Set}$  of all spades.

Prob (**K OR S**) = P(**K**) + P(**S**) – Prob (**K AND S**). =  $\frac{4}{52} + \frac{13}{52} - \frac{1}{52} = \frac{16}{52} = \frac{4}{13} = 30.7\%$  We are subtracting out the common card to set K AND set S; that is the K so we don't double count it. Mutually exclusive Events. The two events or sets that share no common outcomes! ie: Kings AND Queens are mutually exclusive. \*\*\*OR = Add; AND = Multiply \*\*\*

Pathways. As per usual PASCAL triangle method, or use the secret combination!  ${}_{n}C_{r}$ where **n** is the total number of steps, **r** is *either* the downs or the rights. Doesn't matter what you count (downs or rights)! Just like selecting non-distinguishable objects.



**UNIT B – PERSONAL FINANCE** 

Simple Interest:  $I = P^*r^*t$  and A = P + I; so:  $A = P(1 + r^*t)$ **Compound Interest:**  $A = P\left(1 + \frac{r}{n}\right)^{nt}$ ; where **A** = Total Amount or **FV** [\$],  $\mathbf{P} = \text{Principal}$  [\$] or  $\mathbf{PV}$ ,  $\mathbf{r} = annual$  percentage rate[%/yr], little **n** is compounding frequency (C/Y times per year), t is time [years]. **Rule of 72**: If I% • years = 72 *then double* 

*Big N* =*Number of Periods* = *annuity payments per year* \* *years* 

Net Worth = Total Assets – Total Liabilities

 $\frac{Gross \, Debt \, Service}{ratio \, [max \, 32\%]} = \frac{\begin{pmatrix} Monthly & Monthly \\ Mortgage + Property + Heating \\ Payment & Taxes & Costs \end{pmatrix}}{Gross \, Monthly \, Income}$   $\frac{Debt - to - equity}{ratio \, [mar \, 50\%]} = \frac{(Total \, Liabilities - Mortgage)}{Gross \, Monthly \, Income}$ Monthly Monthly Monthly ratio [max 50%] Net worth







Logs. If  $2^3 = 8$  then  $\log_2 8 = 3$ . Change of Base:  $\log_a x = \frac{\log_{10} x}{\log_{10} a}$ ; eg:  $\log_2 8 = \frac{\log_{10} x}{\log_{10} 2} = 3$ 

## **UNIT F – SINUSOIDAL FUNCTIONS**

**y** =Asin(Bx + C) + D A is the Amplitude, **B** is the number times a cycle fits into  $2\pi$ . (or 360°). Large **B** squishes the cycles in the *x*domain.  $T = Period = \frac{2\pi}{B} or \frac{360^{\circ}}{B}$ .

C and B work together for horizontal *phase shift* to affect where cycle starts. Horizontal **Phase Shift of sine curve** = -C/B. D is the Median value; half the data is above; half below so D is the vertical displacement upwards from x-axis of all the data. D = (Max + Min)/2. Max= D + A, Min = D - A.

**Radians**: Exactly  $\pi$  radians in 180°. Conversion factor is:  $\pi^r/180^\circ$ . Eg:  $60^\circ = 60^\circ *\pi^r/180^\circ = \frac{\pi}{2} = 1.22$  radians.

 $\frac{4\pi^{r}}{9} = \frac{4\pi^{r}}{9} * \frac{180^{\circ}}{\pi^{r}} = 80^{\circ}$  *Make sure calculator is in proper Degree or Radian mode!*Use **Zoom 7:TRIG**.

Sine Regressions are *always* calculated as proper radians.

## **LOGIC NOTES: Truth Table**

| Α | в | ΑΛΒ | A∨B | $A \rightarrow B$ | A↔ B | Α' |
|---|---|-----|-----|-------------------|------|----|
| Т | Т | Т   | Т   | Т                 | Т    | F  |
| Т | F | F   | Т   | F                 | F    | F  |
| F | Т | F   | Т   | Т                 | F    | Т  |
| F | F | F   | F   | Т                 | Т    | Т  |



**UNIT G – DESIGN AND MEASUREMENT** (you will be provided geometric formulae) **Common Conversions:** 1 in = 2.54 cm. Im = 3.28 ft. 1 m = 39.37 in. 1 Kg = 2.21 lbs. 1 ImpGal = 4.55 l. 1 km = 0.6214 mi. Example:  $3mi * \frac{1 km}{0.6214mi} = 4.83 km$ 

**Kilo:** k = 1,000. **Centi:** c = 1/100. **Milli:**  $\mathbf{m} = 1/1000$ . 1ft = 12 inches. 1 yard = 3 ft **Common Geometric Formulas. Circle:**  $\mathbf{A} = \pi \mathbf{r}^2$ ;  $\mathbf{C} = \pi \mathbf{d}$  or  $2\pi \mathbf{r}$ . **Triangle:**  $\mathbf{A} = \frac{1}{2}\mathbf{b}\mathbf{h}$  **Vol**<sub>prism</sub> = **Base**<sub>area</sub>\***h**. **Vol**<sub>RecPrism</sub> = (I\*w)\***h**. **Vol**<sub>Cyl</sub> =  $\pi \mathbf{r}^{2*}\mathbf{h}$ . **Vol**<sub>Pyramid</sub> = 1/3 \* **Vol**<sub>Prism</sub> **Vol**<sub>Sphere</sub> =  $(\frac{4}{3})\pi r^3$ . SA is sum of area of all faces and sides.  $\mathbf{SA}_{Cyl} = 2\pi \mathbf{r}^2 + 2\pi \mathbf{r}\mathbf{h}$ . **TI 83 HINTS: Find A Vertex:** Use  $2^{nd}$  **TRACE 3:minimum** or **4:maximum**. Dance left of the vertex  $\rightarrow$ 

**ENTER**, dance right of the vertex  $\rightarrow$  **ENTER**, then move to approximate guess  $\rightarrow$  **ENTER**. **Find Y-Intercept:** Evaluate the function at X = 0.  $2^{nd}$  **TRACE** 1:value and enter X = 0. **Find X-intercept(s)** (or Zeros or Roots): Find the 'zeros' to solve a quadratic.  $2^{nd}$  **TRACE** 2:zero. A bit left: **ENT** a bit right: **ENT**, guess: **ENT**. **Find the Intersection of two curves (or lines)**.  $2^{nd}$  **TRACE** 5: intersect. Used to solve a quadratic also

Regression: Enter sufficient data points into  $L_1$  and  $L_2$  usingSTAT EDIT . Plot the Points by turningonSTAT PLOT ( $2^{nd}$  Y=). Find regression equation:STAT CALC [???]RegENTER on blank line.Thenwhen you get [???]Reg (or ExpReg, or QuadReg or ...) on Main Screen append VARSY-VARSFUNCTION Y1 topaste the regression into Y1= equation.Then Graph. SelectZOOM9:ZoomStat will fit scatter plot perfectly.