

c. y = -3

2. Graph the above equations using a graphing tool, especially the TI-83 or one of the many on-line graphing tools to which you have access.

Х

 $\frac{-1}{0}$

1

2

3 4 5

3. Manually graph the quadratic function:

 $\mathbf{y} = -\mathbf{x}^2 + 4\mathbf{x} - 3.$

a. Find the vertex point: (_____, ____)

- b. Find the **x–intercepts**:
- c. Find the **y–intercept**:

d. Find the equation of the axis of symmetry:

			1
Revised			1
10011000			1
			1
	 	 	1

4. Is it possible for a quadratic equation to have no 'y' intercept? Explain!

5. Graph the following two quadratic functions and label them **f** and **g**. (Just cheat and read the table from the graphing calculator to get the points on the parabola):

a. $f(x) = x^2 + 6x + 9$

b.
$$g(x) = -x^2 + 7x + 2$$

(plot the function on the y-axis as normal)

6. For the above functions find:

Vertex:	f(x):(,)	g(x): (,
Domain:	f(x):	g(x):
Range:	f(x):	g(x):
y-intercept:	f(x):	g(x):
x-intercept(s):	f(x):	g(x):

7. Advanced Thinking. In the above question with functions **f** and **g**, can you find the vertex without actually graphing? This is really a *Pre-Calculus* math question so you do not really need to know how to do it in Applied where everything is supposedly done on a calculator! But you can find the vertex pretty easily!

a. Find the vertex of f(x): Take the co-efficient on the 'x' term, 6, make it negative, -6, now divide the -6 by twice the co-efficient on the x² term (2*1). So the line of symmetry is given by -6 / 2. Or -3! Easier than graphing eh!! So know you know the function has a vertex where the x = -3. So what is f(-3)? $f(-3) = (-3)^2 + 6(-3) + 9 = 0$. So the vertex is at (-3, 0).

b. Using this advanced thinking information can you calculate the vertex of function g

)

without graphing? (if you don't like this approach do not do Pre-Calculus!)

8. **Trajectory example**. On the earth the '*trajectory*' (the *path*) of **every** thrown object thrown straight up from ground level at **20 meters per sec** (*about 40 miles per hour*) is given by the function: $h(t) = -5t^2 + 20t$.

The meaning of this formula if you were taking science class is that the height, **h**, of the object is a function of time, **t**. So we say that the function is $\mathbf{h}(t)$. Thus the height of an object $\mathbf{h}(t)$ in meters is given by the function $\mathbf{h}(t) = -5t^2 + 20t$, where **t** is given in units of seconds.

But don't worry about the science and physics, just trust the equation I gave you.

Use a graphing calculator (or just math or logic if you can) find:

- a. the vertex (the time and height when the object reaches its peak)
- b. the equation of the line of symmetry
- c. the time it takes to reach the vertex
- d. the time it takes to get down to earth again after it reaches its peak
- e. the two x-intercepts (or rather t-intercepts in this case)
- f. the total time the ball is in the air.
- g. how high is the object after 1 second?
- h. how high is the object after 1.5 seconds?
- i. how high is the object after 0.5 seconds?
- j. at what time, **t**, is the object 10 meters up?

The following are some more to have fun with Optional unless otherwise told!

Х

-4

-3

-2

-1

0 1

X

9. Manually graph the quadratic function:

$\mathbf{y} = \mathbf{x}^2 + \mathbf{4}\mathbf{x} + \mathbf{4}.$

a. Find the vertex point:

b. Find the **x–intercepts**:

c. Find the **y**–**intercept**:

- d. Find the equation of the axis of symmetry:
- e. Domain:
- f. Range:

10. Manually graph the quadratic function:

$y = 2^*(x - 4)^*(x + 6)$

a. Find the vertex point:

(____, ____)

- b. Find the **x–intercepts**:
- c. Find the **y–intercept**:

d. Find the equation of the axis of symmetry:

e. Domain:

f. Range:

Check with a graphing tool!

Check with a graphing tool!

4

