Chapter 2

Techniques of Counting

INTRODUCTION

In this chapter we develop some techniques for determining without direct enumeration
the number of possible outcomes of a particular experiment or the number of elements in
a particular set. Such techniques are sometimes referred to as combinatorial analysis.

FUNDAMENTAL PRINCIPLE OF COUNTING
We begin with the following basic principle.

Fundamental Principle of Counting: If some procedure can be performed in n: dif-
ferent ways, and if, following this procedure, a second procedure can be
performed in n, different ways, and if, following this second procedure, a
third procedure can be performed in n; different ways, and so forth; then the
number of ways the procedures can be performed in the order indicated is the
product Ni*N2*N3 ....
Example 21: Suppose a license plate contains two distinct letters followed by three digits with
the first digit not zero. How many different license plates can be printed?

The first letter can be printed in 26 different ways, the second letter in 25 dif-
ferent ways (since the letter printed first cannot be chosen for the second letter),
the first digit in 9 ways and each of the other two digits in 10 ways. Hence

26+25-9+10-10 = 585,000
different plates can be printed.

FACTORIAL NOTATION

The product of the positive integers from 1 to n inclusive occurs very often in mathe-
matics and hence is denoted by the special symbol n! (read “n factorial”):
n! =1-2-3----+-(n—-2)(n—1)n

It is also convenient to define 0!=1.

Example 2.2: 2! = 1.2 = 2, 3! = 1+2+3 = 6, 4! = 1234 = 24,
b! = 5+4! = 524 = 120, 6! = 6-5! = 6-120 = 720

8! 8:7-6! _ 12111091 _ 121

Example 23: E'.— - —6'— = 8+7 = 56 121110 = T = ‘9—!—

PERMUTATIONS

An arrangement of a set of » objects in a given order is called a permutation of the
objects (taken all at a time). An arrangement of any »=n of these objects in a given
order is called an r-permutation or a permutation of the n objects taken r at a time.

Example 2.4: Consider the set of letters a, b, ¢ and d. Then:
(i) bdca, dcba and acdb are permutations of the 4 letters (taken all at a time);
(ii) bad, adb, cbd and bea are permutations of the 4 letters taken 3 at a time;
(iii) ad, eb, da and bd are permutations of the 4 letters taken 2 at a time.

16
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The number of permutations of n objects taken r at a time will be denoted by
P(n, )
Before we derive the general formula for P(n, r) we consider a special case.

Example 25: Find the number of permutations of 6 objects, say «a, b, ¢,d, e, f, taken three at a
time. In other words, find the number of “three letter words” with distinct letters
that can be formed from the above six letters.

Let the general three letter word be represented by three boxes:

Now the first letter can be chosen in 6 different ways; following this, the second
letter can be chosen in 5 different ways; and, following this, the last letter can be
chosen in 4 different ways. Write each number in its appropriate box as follows:

Thus by the fundamental principle of counting there are 6+5+4 = 120 possible
three letter words without repetitions from the six letters, or there are 120 permu-
tations of 6 objects taken 3 at a time. That is,

P(6,3) = 120

The derivation of the formula for P(n, r) follows the procedure in the preceding example.
The first element in an r-permutation of n-objects can be chosen in » different ways; follow-
ing this, the second element in the permutation can be chosen in n—1 ways; and, following
this, the third element in the permutation can be chosen in n —2 ways. Continuing in this
manner, we have that the rth (last) element in the r-permutation can be chosen in n—(r—1) =
n—r+1 ways. Thus

n!

Theorem 2.1: P(n,7r) = n(n—1)(n—2):--(n—r+1) = m—n1

The second part of the formula follows from the fact that

nn—1)n—-2)---(n—-r+1)-(n—r)! n!

nn—1)n—2) - (n—r+1) m—1)1 (n—7)!

i

In the special case that » = n, we have

Pn,n) = n(n—1)(n—2)---3-2:1 = n!
Namely,

Corollary 2.2: There are n! permutations of n objects (taken all at a time).

Example 2.6: How many permutations are there of 3 objects, say, a, b and ¢?

By the above corollary there are 3! =1+2+3 = 6 such permutations. These
are abc, ach, bac, bea, cab, cha.

PERMUTATIONS WITH REPETITIONS

Frequently we want to know the number of permutations of objects some of which are
alike, as illustrated below. The general formula follows.

Theorem 2.3: The number of permutations of # objects of which n, are alike, n. are

alike, ..., n, are alike is .

I ne! - - n,l
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We indicate the proof of the above theorem by a particular example. Suppose we want
to form all possible 5 letter words using the letters from the word DADDY. Now there
are 5! =120 permutations of the objects D, A, D, D3, Y where the three D’s are dis-
tinguished. Observe that the following six permutations

Dy\D:D;AY, D:D\D3AY, DsD\D.AY, D\D3D;AY, D:DsD\AY, DsD.DAY

produce the same word when the subscripts are removed. The 6 comes from the fact that
there are 3! =3-:2+1 =6 different ways of placing the three D’s in the first three posi-
tions in the permutation. This is true for each of the other possible positions in which the
Dr’s appear. Accordingly there are

5! 120

31§ ~ 20
different 5 letter words that can be formed using the letters from the word DADDY.

Example 2.7: How many different signals, each consisting of 8 flags hung in a vertical line,
can be formed from a set of 4 indistinguishable red flags, 3 indistinguishable white
flags, and a blue flag? We seek the number of permutations of 8 objects of which
4 are alike (the red flags) and 3 are alike (the white flags). By the above theorem,
there are

81! BeT7eBebhede3e2e1

a3l = 4-3-2-1-3-2.1 280

different signals.

ORDERED SAMPLES

Many problems in combinatorial analysis and, in particular, probability are concerned
with choosing a ball from an urn containing » balls (or a card from a deck, or a person
from a population). When we choose one ball after another from the urn, say r times, we
call the choice an ordered sample of size r. We consider two cases:

(i) Sampling with replacement. Here the ball is replaced in the urn before the next ball
is chosen. Now since there are n different ways to choose each ball, there are by the
fundamental principle of counting

r times
neN‘N- M = N

different ordered samples with replacement of size 7.

(i) Sampling without replacement. Here the ball is not replaced in the urn before the next
ball is chosen. Thus there are no repetitions in the ordered sample. In other words,
an ordered sample of size r without replacement is simply an r-permutation of the
objects in the urn. Thus there are

n!
P(n,r) = n(n—l)(n—Z) . -(n—r+l) = W

different ordered samples of size » without replacement from a population of n objects.

Example 2.8: In how many ways can one choose three cards in succession from a deck of 52 cards
(i) with replacement, (ii) without replacement? If each card is replaced in the
deck before the next card is chosen, then each card can be chosen in 52 different
ways, Hence there are

b2+52+52 = 523 = 140,608

different ordered samples of size 3 with replacement,
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On the other hand if there is no replacement, then the first card can be chosen

in 52 different ways, the second card in 51 different ways, and the third and last
card in 50 different ways. Thus there are

52+51+50 = 132,600
different ordered samples of size 3 without replacement.

BINOMIAL COEFFICIENTS AND THEOREM
The symbol <:,L> , read “nCr”, where r and » are positive integers with r =n, is defined
as follows:
<’n> _ nan-1)n—2)---(n—7r+1)
r) 1:2:8---(r—1)r

These numbers are called the binomial coefficients in view of Theorem 2.5 below.

8\ _ 8.7 _ 9\  9-8-7-6 _ 12y 12.11:10-9-8 _
Example 2.9: <2> =12 = 28 <4 = {v973.4 = 126 5/~ 1 5.3.4.5 792

Observe that (2) has exactly r factors in both the numerator and denominator. Also,

n> _ oan-1)---(n—r+1) _ nn-1-+-@m-r+ln-n! n!
<T T T 128 (r=1)r T 1:2:83--(r—Ur(n—-n!  rln—-7n)!

Using this formula and the fact that n—(»n—7) =r, we obtain the following important
relation.

n n . . _ n\ _ /n
Lemma 24: <n—'r> = (1,) or, in other words, if ¢+ b =n then <a> = <b>

10\  10-9:8:7-6-5+4 _ 10\ _ /10 _ 10-9.8 _
Example 2.10: <7> = J72 34567 120 or <7> = <3> = Jia.8 = 120

Note that the second method saves both space and time.

Remark: Motivated by the second formula for (7: and the fact that 0! =1, we define:

" n! . ] 0 0!
<0> = 5ip1 = 1 and, in particular, (0> = oro1 = 1

The Binomial Theorem, which is proved (Problem 2.18) by mathematical induction, gives
the general expression for the expansion of (a + b)".

Theorem 2.5 (Binomial Theorem):

@+b)p = 20 <’;’> b

n{in—1
= @ + na"'b + —-(sz—za"‘%z + -+ + nab"! + b*
54 bed
Example 2.11: (a+b)5 = a4+ bath + i—.'éaabz + ﬁ(lf"b3 + babt + b5

= a5 + 5ath + 10a3b? + 10a2b3 + babt + b3

65 654 6+5
8 — gb 5 2°9 4 3p3 279 L2pd 5 6
(a+b) a +6ab+1.2ab2+ 1.2.3ab +1.2a.b + 6ab® + b

= @8 + 6aSh + 15a%h® + 2003 + 15a?bt + 6abS + b8
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The following properties of the expansion of (a + b)" should be observed:
(1) There are » + 1 terms.
(ii) The sum of the exponents of a and b in each term is n.

(iii) The exponents of a decrease term by term from n to 0; the exponents of b increase
term by term from 0 to n.

(iv) The coefficient of any term is (Z) where / is the exponent of either @ or b. (This fol-
lows from Lemma 2.4.)

(v) The coefficients of terms equidistant from the ends are equal.

We remark that the coefficients of the successive powers of a + b can be arranged in a
triangular array of numbers, called Pascal’s triangle, as follows:

(a+ b)Y = 1 1
(@+b! = a + b 1 1
(a+d)2 = a2 + 2ab + b2 1 2 1
{fa+b)? = a® + 3a2b + 3ab2 + b3 1 3 3 1
fa+b) = at + 4a3b + 64202 + 4dabd® + b 1 4 6 4 1
(a+b)> = a® + Bbatdb + 10a3b2 + 10a203 + 5abd + bS5 1 b5 @ 10 6 1
(a+d)8 = a8 + 6a5b -+ 15a%b2 + 20a3b3 + 15a2b? + 6ab5 + b6 1 6 (H O 15 6 1

............................................................................................

Pascal’s triangle has the following interesting properties.
(a) The first number and the last number in each row is 1.

(b) Every other number in the array can be obtained by adding the two numbers appearing
directly above it. For example: 10 = 4+ 6, 15 = 5+ 10, 20 = 10 + 10.

We note that property (b) above is equivalent to the following theorem about binomial
coefficients.

n+1 n n
Theorem 2.6: < r ) = <r—1> + <r>

Now let 74, 7, ..., 7. be nonnegative integers such that ni+ 724+ -+ +n, = n. Then

the expression < n > is defined as follows:
’n/l, n2, “ v ey Ny
n _ n!
N1, Nz, o ooy Br ny!lng! - - n,!
For example,
7 _ 7! _ 8 . 8! _
<2,3,2> Too218121 T 210 (4,2,2,0> To4r1212100 420

These numbers are called the multinomial coefficients in view of the following theorem
which generalizes the binomial theorem.

n

Theorem 2.7: (a1 + a2+ -+ +a;)* =
nyFngt o dn =n Ny, Ng, ...

n, n n
ala.2-.-.ar"
,nr>l 2 r
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COMBINATIONS

Suppose we have a collection of n objects. A combination of these n objects taken r at
a time, or an r-combination, is any subset of r elements. In other words, an r-combination
is any selection of 7 of the n objects where order does not count.

Example 2.12: The combinations of the letters a,b,c,d taken 3 at a time are
{a, b, ¢}, {a,b,d}, {a,c,d}, {b,c,d} orsimply abe, abd, acd, bed
Observe that the following combinations are equal:

abe, ach, bac, bea, cab, cba
That is, each denotes the same set {a, b, ¢}.
The number of combinations of n objects taken » at a time will be denoted by
C(n, 1)
Before we give the general formula for C(n, r), we consider a special case.

Example 2.13: We determine the number of combinations of the four letters a, b, ¢, d taken 3 at a

time. Note that each combination consisting of three letters determines 3! = 6
permutations of the letters in the combination:

Combinations Permutations
abe abe, ach, bac, bea, cab, cba
abd abd, adb, bad, bda, dab, dba
acd aed, ade, cad, cda, dae, dea
bed bed, bde, cbd, edb, dbe, deb

Thus the number of combinations multiplied by 3! equals the number of permu-
tations:

C(4,8)+3! = P4, 3) or C(4, 3) = P(;; 3)

Now P(4,3) =432 =24 and 3! =6; hence C(4,3) =4 as noted above,

Since each combination of » objects taken r at a time determines ! permutations of the
objects, we can conclude that
P(n,7ry = r!1C(n, 1)
Thus we obtain

Theorem 2.8: C(n,7) = P(:&;'r) = 1*'(7;”i 7)!

Recall that the binomial coefficient <Z> was defined to be

Cln, 1) = (f)

We shall use C(n, r) and <2> interchangeably.

m‘_—;—m 5 hence
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Example 2.14: How many committees of 3 can be formed from 8 people? Each committee is
essentially a combination of the 8 people taken 3 at a time. Thus

8\ _ 8:7-6 _
C@8,3) = <3> = 1:ovg = 06

different committees can be formed.

ORDERED PARTITIONS

Suppose an urn A contains seven marbles numbered 1 through 7. We compute the num-
ber of ways we can draw, first, 2 marbles from the urn, then 3 marbles from the urn, and
lastly 2 marbles from the urn. In other words, we want to compute the number of ordered

partitions
(A1, As, As)

of the set of 7 marbles into cells A, containing 2 marbles, A: containing 3 marbles and As
containing 2 marbles. We call these ordered partitions since we distinguish between

({1, 2} {3,4,5)}, {6,7}) and ({6,7}, {3, 4,5}, {1,2})
each of which yields the same partition of A.
Since we begin with 7 marbles in the urn, there are G) ways of drawing the first 2
marbles, i.e. of determining the first cell A.; following this, there are 5 marbles left in the
urn and so there are (g) ways of drawing the 3 marbles, i.e. of determining A,; finally,

there are 2 marbles left in the urn and so there are <2> ways of determining the last cell

As. Thus there are
7\/5 76 5-4-3 2-1
(2><3><§> = T2'T23' 12 - 210

different ordered partitions of A into cells A, containing 2 marbles, A: containing 3 marbles,
and A; containing 2 marbles.

Now observe that

7\ /5 7 5t 2 71
2/\8/\2/ T 2151 8121 2101 ~ 273121

since each numerator after the first is cancelled by the second term in the denominator of
the previous factor. In a similar manner we prove (Problem 2.28)

Theorem 2.9: Let A contain n elements and let n, %, ...,n. be positive integers with
M1+ nzs+ - -- +n,=n. Then there exist

n!
mlng!ng! - n,!
different ordered partitions of A of the form (A4, As, ..., A,) where A, con-
tains n, elements, As containg %, elements, ..., and A, contains n, elements.

Example 2.15: In how many ways can 9 toys be divided between 4 children if the youngest child
is to receive 3 toys and each of the other children 2 toys?

We wish to find the number of ordered partitions of the 9 toys into 4 cells
containing 3, 2, 2 and 2 toys respectively. By the above theorem, there are
91

3T2i2rg] — 7060

such ordered partitions.
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TREE DIAGRAMS

23

A tree diagram is a device used to enumerate all the possible outcomes of a sequence of

experiments where each experiment can occur in a finite number of ways.

of tree diagrams is illustrated in the following examples.

Example 2.16: Find the product set A X B X C where A = {1,2},

The tree diagram follows:

=

AAA

W o W o W o

AAN

The construction

B = {a,b,¢} and C = {3,4}.

1,aq,3)
1, a, 4)
1,5,3)
(1,5, 4)
(1,6, 8)
(1,¢4)
2, a,8)
2, a, 4)
(2,,3)
2,5, 4)
2, ¢ 3)
2,0 4)

Observe that the tree is constructed from left to right, and that the number of
branches at each point corresponds to the number of possible outcomes of the next

experiment.

Example 2.17:

Mark and Eric are to play a tennis tournament. The first person to win two games

in a row or who wins a total of three games wins the tournament. The following

diagram shows the possible outcomes of the tournament.

e

e

Observe that there are 10 endpoints which correspond to the 10 possible out-

comes of the tournament:

MM, MEMM, MEMEM, MEMEE, MEE, EMM, EMEMM, EMEME, EMEE, EE

The path from the beginning of the tree to the endpoint indicates who won which

game in the individual tournament.
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Solved Problems
FACTORIAL
2.1. Compute 4!,5!,6!, 7! and 8!.
41 = 12+83+4 = 24 71 = 746! = 7-720 = 5040
51 = 1+2+8+4+5 = 54! = 5:24 = 120 8! = 87! = 8-5040 = 40,320
6] = 1+2:8:4+5:6 = 6:5! = 6120 = 720
oo 181 T
2.2. Compute: (1)m, (ii) 101
. 13! _ 13-12-11-10:9+8-7-6-5-4-3-2-1 _ . __ _
O 97 = ~ 11-10-9-8-7-6-5-4-3-3.1  — 13712 = 156
131 _ 13-12-11! _ . o
or 7 = T~ = 18-12 = 156
i = 71 _ 1 1
W10t T 10-9-8-77  10-9-8 _ 720
) e e m! o (m+2)!
2.3. Simplify: (1) CESIk (ii) por Rl
. n! _nn—1{n—2)--:321 . n! _ o nn—1)! _
O GO~ m-Dm—2 3-2-1 ~ " onsimply, T—5n = m-1! "
] ) —_ —_ ces3e9
) LD - (SO A YD 00) s = v e
or, simply, OFRL - FDOEDl _ gy gy) = n2 o 3n 42

PERMUTATIONS, ORDERED SAMPLES

24.

If repetitions are not permitted, (i) how many 3 digit numbers can be formed from
the six digits 2, 3, 5, 6, 7 and 9? (ii) How many of these are less than 400? (iii) How
many are even? (iv) How many are odd? (v) How many are multiples of 5?

In each case draw three boxes D D D to represent an arbitrary number, and then

write in each box the number of digits that can be placed there.

®

(i)

(iii)

(iv)

The box on the left can be filled in 6 ways; following this, the middle box can be filled in

5 ways; and, lastly, the box on the right can be filled in 4 ways: [Z] E E Thus there
are 6+5+4 = 120 numbers.

The box on the left can be filled in only 2 ways, by 2 or 3, since each number must be less
than 400; the middle box can be filled in § ways; and, lastly, the box on the right can be filled

in 4 ways: EI EI E} Thus there are 2+5+4 = 40 numbers.

The box on the right can be filled in only 2 ways, by 2 or 6, since the numbers must be even;
the box on the left can then be filled in 5 ways; and, lastly, the middle box can be filled in

4 ways: B E] Thus there are 5+4+2 = 40 numbers.

The box on the right can be filled in only 4 ways, by 3, 5, 7 or 9, since the numbers must be
odd; the box on the left can then be filled in 5 ways; and, lastly, the box in the middle can

be filled in 4 ways: E‘ IZ} IE Thus there are 5+4+4 = 80 numbers.
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2.5.

2.6.

2.7.

28.

2.9.

(v) The box on the right can be filled in only 1 way, by 5, since the numbers must be multiples
of 5; the box on the left can then be filled in 5 ways; and, lastly, the box in the middle can

be filled in 4 ways: [E E’ . Thus there are 5°¢4+1 = 20 numbers.

In how many ways can a party of 7 persons arrange themselves (i) in a row of
7 chairs? (ii) around a circular table?

(i) The seven persons can arrange themselves in a row in 7¢6¢5°4+3°2+1 = 7! ways.
(ii) One person can sit at any place in the circular table. The other six persons can then arrange
themselves in 6+5+4+3+2+1 = 6! ways around the table.

This is an example of a circular permutation. In general, n objects can be arranged in
acirclein (n—1)(n—2)---3¢2+¢1 = (n—1)! ways.

(i) In how many ways can 3 boys and 2 girls sit in a row? (ii) In how many ways
can they sit in a row if the boys and girls are each to sit together? (iii) In how
many ways can they sit in a row if just the girls are to sit together?

(i) The five persons can sit in a rowin 5+4+3+2+1 = B! = 120 ways.

(ii) There are 2 ways to distribute them according to sex: BBBGG or GGBBB. In each case the
boys can sitin 3+2+1 = 3! = 6 ways, and the girls can sit in 2+1 = 2! = 2 ways. Thus,
altogether, there are 2¢3!¢2! = 2:6+2 = 24 ways.

(iii) There are 4 ways to distribute them according to sex: GGBBB, BGGBB, BBGGB, BBBGG.
Note that each way corresponds to the number, 0, 1, 2 or 3, of boys sitting to the left of the

girls. In each case, the boys can sit in 3! ways, and the girls in 2! ways. Thus, altogether,
there are 4+8!+2! = 4+6+2 = 48 ways.

How many different signals, each consisting of 6 flags hung in a vertical line, can
be formed from 4 identical red flags and 2 identical blue flags?

!
This problem concerns permutations with repetitions. There are Z—?—2—, = 15 signals since
there are 6 flags of which 4 are red and 2 are blue. s

How many distinct permutations can be formed from all the letters of each word:
(i) them, (ii) unusual, (iii) sociological ?

(i) 4! = 24, since there are 4 letters and no repetitions.

'
(i) % = 840, since there are 7 letters of which 3 are u,
12!

3TataTal’ since there are 12 letters of which 3 are o, 2 are ¢, 2 are ¢, and 2 are L

(iii)

(i) In how many ways can 3 Americans, 4 Frenchmen, 4 Danes and 2 Italians be
seated in a row so that those of the same nationality sit together?

(if) Solve the same problem if they sit at a round table.

(i) The 4 nationalities can be arranged in a row in 4! ways. In each case the 3 Americans can
be seated in 3! ways, the 4 Frenchmen in 4! ways, the 4 Danes in 4! ways, and the 2 Italians
in 2! ways. Thus, altogether, there are 4!3!'4!4!2! = 165,888 arrangements.

(ii) The 4 nationalities can be arranged in a cirele in 3! ways (see Problem 14.4 on circular
permutations). In each case the 3 Americans can be seated in 3! ways, the 4 Frenchmen in
4! ways, the 4 Danes in 4! ways, and the 2 Italians in 2! ways. Thus, altogether, there are
3131414!12! = 41,472 arrangements.
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2.10. Suppose an urn contains 8 balls. Find the number of ordered samples of size 3
(i) with replacement, (ii) without replacement.

(i} Each ball in the ordered sample can be chosen in 8 ways; hence there are 8-8+8 = 83 = 512
samples with replacement,.

(ii) The first ball in the ordered sample can be chosen in 8 ways, the next in 7 ways, and the last
in 6 ways. Thus there are 8+7+6 = 836 samples without replacement.

2.11. Find n if (i) P(n, 2) = 72, (ii) P(n, 4) = 42P(n,2), (iii) 2P(n, 2) + 50 = P(2n, 2).

(i) Pn,2)=nn—1)=n2—mn; hence n2—n =72 or n2~n—72=0 or (n—9)(n+8)=0.

Since n must be positive, the only answer is = = 9.
(iiy P(n,4) = n(n—1)(n—2)(n—3) and P(n,2) = n(n—1). Hence

nan—1)(n—2)(n—3) = 42n(n—1) or,if 0,1, (n—2)(n—3) = 42
or m?2—5n+6 = 42 or w2 —5n—83 =0 or (n—9n+4) =0

Since n must be positive, the only answer is n = 9.

(iti) P(n,2) =n(n—1) =n2—n and P(2n,2) = 2n(2n—1) = 4n2—~2n. Hence
2n2—n) + 50 = 4n2 —2n or 2n2—2n+ 50 = 4n2—~2n or 50 = 202 or =n? = 2§

Since n must be positive, the only answer is n = 5.

BINOMIAL COEFFICIENTS AND THEOREM
2.12. Compute: (i) (1;>, (i) <142>, (i) <155>.

Recall that there are as many factors in the numerator as in the denominator.

. 16\ _ 16-15-14 oo (15 _ 15e14¢13-12-11
(i) (3> = {.2.3 = 560 (iii) <5> = 1-8-3:4+5 = 3003
o 12\ 12-11-10-9
(ii) <4> = q.2.3.4 - 495
o (8 9N ...
2.13. Compute: (i) 5) (i) 7)s (iii) 6
. 8\  8:7+6+5-4
(i) <5> = {73.3.4.5 — 96
Note that 8 —5 = 3; hence we could also compute (:) as follows:
8 8\ _ 8:7-6 _
(6) = ) - F28 = w

s . 9\ _/9\ _ 9-8 _
(il) Now 9—7 = 2; hence <7> = <2> =173 = 36.

o 10  /10\ _ 10-9:8-7 _
(iif) Now 10 — 6 = 4; hence <6> = ( > = T 3.3.3 = 210.

2.14. Expand and simplify: (2x + y?)°.

E 5:3(29:)2(1/2)3 + g(2x)(y2)4 + (yz)s

3225 + 80xiyZ + B0x3yt 4+ 40x2y% + 10xy8 + ylo

@r+y? = (205 + D@0 + s @aPw) +
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2.15. Expand and simplify: (z2 — 2y)8,

6+b
1-2

6+54
123

(-2 = (@8 + (-2y) + S22y + (22)3(—2y)3

+ 16.;2— (x2)2(_21/)4 + %(12)(-2y)5 + (_zy)ﬁ

= 12 — 1210y + 60x8y2 — 1602%y3 + 2402ty — 192225 + 64y¢

e peoves 2 = 15 = (D)5 () +(3) (4 4 (4).

Expand (1 + 1) using the binomial theorem:

e (e (G e (en e (e
() (-0

n+1 n n
2.17. Prove Theorem 2.6: ( > = ( >+< .
r r—1 T
n ny n! n! . .
Now r—1 + Y e P (YR e Y + T m—nt To obtain the same denomi-
nator in both fractions, multiply the first fraction by ; and the second fraction by ::—:i; Hence
n + n _ ren! + (n—r+1)+n!
r—1 7 T ore(r—=1le(n—r+1)! rle(n—r+1)s(n—n!
_ ren! (n—r+1)en!
T ortn—r+ 1! rt(n—r+1)!
_ realt@—r+ent _ [rtm—r+]en!
- ri(n—r+ 1! a rl(n—r+1)!
. (n+ )n! _ (n+ 1) _ n+1
T orte—r+D)! T Flm—r+1)t T r

2.18. Prove the Binomial Theorem 2.5: (a +b)* = Y <n.> a="b".

r
r=0
The theorem is true for n =1, since

1
s <1>a1"b' = <;>a1b° n <;>a°b1 = a4+ b = (a+b)
r=:=0 r

We assume the theorem holds for (@ + b)* and prove it is true for (o + d)n+1.
(a+bntl = (a+b)(a+b)

= (a+ b) [an + <7L> ar=1p + --- + < n >an—r+l br—1
1 r—1
n n
s (Dot (Dawr 4]
r 1

Now the term in the product which contains b” is obtained from

b[:< n )an—r+1 br—li] + a[<n> an—rbr:| < n >an~r+1 br + <n>an-r+lbr
r—1 r r—1 r
= |:< n > + <n>]an-r+l br
r—1 r

I
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+1
But, by Theorem 2.6, (r " 1> + (:) = <n - > Thus the term containing b is <n + 1) ar— T+l pr,
- T
Note that (a + b)(a + b)" is a polynomial of degree n+1 in b. Consequently,
1l S+
(@+bdm*+1 = (a+bat+br = 20 , jarTTHeT
o
which was to be proved.
2.19. Compute the following multinomial coefficients:
8 10
,  (iii)
321 4,2,2,0 538,22
. 6 6! 6+5+4+3+2+1
@ (3,2, 1> = 31211~ 3ezeieaeier o O
. 8 _ 8!  8eT7+6+5:43:2+1
(1) <4, 2 2, 0> = F1gtat0l ~ 1-3-2.1-2-1-2-.1.1 20
. 10 . .
(iii) The expression <5 3 2 2) has no meaning since 5+ 342+ 2 # 10.
COMBINATIONS
2.20. In how many ways can a committee consisting of 3 men and 2 women be chosen
from 7 men and 5 women? .
The 3 men can be chosen from the 7 men in <3> ways, and the 2 women can be chosen from the
. (b . . [T\[/5\ __7+6:5 5.4
b women in <2> ways. Hence the committee can be chosen in <3><2> =12.3°1°2° 350 ways,
2.21. A delegation of 4 students is selected each year from a college to attend the National

Student Association annual meeting. (i) In how many ways can the delegation be
chosen if there are 12 eligible students? (ii) In how many ways if two of the
eligible students will not attend the meeting together? (iii) In how many ways if
two of the eligible students are married and will only attend the meeting together?

: . 12 12411109
(i) The 4 students can be chosen from the 12 students in 4 = {-2.3.2 "~ 495 ways.
(if) Let A and B denote the students who will not attend the meeting together.
Method 1. 10 10:9-8:7
If neither A nor B is included, then the delegation can be chosen in < > = T1v3-3.2 =
210 ways. If either A or B, but not both, is included, then the delegation can be chosen in

9.8
2. <130> = 2 119-‘2‘—3 = 240 ways. Thus, altogether, the delegation can be chosen in

210 + 240 = 450 ways.

Method 2.
If A and B are both included, then the other 2 members of the delegation can be chosen in
10 .
( ) = 45 ways. Thus there are 495 — 45 = 450 ways the delegation can be chosen if

2
A and B are not both included.

(iii) Let C and D denote the married students. If C and D do not go, then the delegation can be
10
chosen in < 4> = 210 ways. If both C and D go, then the delegation can be chosen in

10
( 2> = 45 ways. Altogether, the delegation can be chosen in 210 4+ 46 = 255 ways.



CHAP. 2} TECHNIQUES OF COUNTING 29

2.22,

2.23.

2.24.

A student is to answer 8 out of 10 questions on an exam. (i) How many choices
has he? (ii) How many if he must answer the first 3 questions? (iii) How many
if he must answer at least 4 of the first 5 questions?

10 .
(i) The 8 questions can be selected in <180> = <2> = 1_10-'29 = 45 ways.

(ii) If he answers the first 3 questions, then he can choose the other 5 questions from the last
YA AN A AN I
7 questions in <5> = <2> =1g= 21 ways.

(iif) If he answers all the first 5 questions, then he can choose the other 3 questions from the last

5
5 in < > = 10 ways. On the other hand, if he answers only 4 of the first 5 questions, then

5 5
he can choose these 4 in < 4> = <1> = b ways, and he can choose the other 4 questions

5
from the last 5 in < 4> = <f> = b ways; hence he can choose the 8 questions in 56 =

25 ways. Thus he has a total of 36 choices.

Find the number of subsets of a set X containing » elements.

Method 1.
The number of subsets of X with » = n elements is given by (j) . Hence, altogether, there are

n n n n n
@)+ @G r () )
subsets of X. The above sum (Problem 2.51) is equal to 2", i.e. there are 2» subsets of X.
Method 2.

There are two possibilities for each element of X: either it belongs to the subset or it doesn’t;

hence there are R
7 times

f—-_%
2+9¢..:09 = 9n

ways to form a subset of X, i.e. there are 2¢ different subsets of X.

In how many ways can a teacher choose one or more students from six eligible
students?
Method 1. .

By the preceding problem, there are 28 = 64 subsets of the set consisting of the six students.

However, the empty set must be deleted since one or more students are chosen. Accordingly there
are 26 —1 = 64 — 1 = 63 ways to choose the students.

Method 2.
Either 1,2,3,4,5 or 6 students are chosen. Hence the number of choices is

(Ve )+ () ()+()+() = ormrmrnmrors - w

ORDERED AND UNORDERED PARTITIONS

2.25.

In how many ways can 7 toys be divided among 3 children if the youngest gets

3 toys and each of the others gets 27?
We seek the number of ordered partitions of 7 objects into cells containing 3, 2 and 2 objects,

7! ipe
respectively. By Theorem 2.9, there are 372121 = 210 such partitions.
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2.26.

2.27.

2.28.

TECHNIQUES OF COUNTING [CHAP. 2

There are 12 students in a class. In how many ways can the 12 students take
3 different tests if 4 students are to take each test?

Method 1.
We seek the number of ordered partitions of the 12 students into cells containing 4 students

1
L2 = 34,650 such partitions.

each. By Theorem 2.9, there are
Method 2.

There are < 4 > ways to choose 4 students to take the first test; following this, there are
8
( 4> ways to choose 4 students to take the second test. The remaining students take the third test.

2 8
Thus, altogether, there are < 4> . ( 4> = 495+ 70 = 34,650 ways for the students to take the tests.

In how many ways can 12 students be partitioned into 3 teams, A1, 42 and As, so that
each team contains 4 students?

Method 1.
Observe that each partition {4,,A4,, 45} of the students can be arranged in 3! = 6 ways
12!
as an ordered partition. Since (see the preceding problem) there are ar4ardl — 34,650 such ordered
partitions, there are 34,650/6 = 5775 (unordered) partitions. e

Method 2.
1
Let A denote one of the students. Then there are <13> ways to choose 3 other students to be

on the same team as A. Now let B denote a student who is not on the same team as A; then there
7
are <3> ways to choose 3 students of the remaining students to be on the same team as B. The

11
remaining 4 students constitute the third team. Thus, altogether, there are <3>'<7>
165+ 35 = 5775 ways to partition the students. 8

Prove Theorem 2.9: Let A contain n elements and let ny, ng, . . ., 7, be positive integers
with n1+n2+ -+ + n, = n. Then there exist
n!
nlnainsg! .- n.!
different ordered partitions of A of the form (A4, 4., ..., A,) where A, contains n,
elements, A: contains n: elements, ..., and A, contains n, elements.

‘We begin with n elements in A; hence there are <:> ways of selecting the cell 4,. Following
1

this, there are n — n, elements left, i.e. in 4 \\( A;, and so there are < l> ways of selecting

ng

n— My —  — M
A, Similarly, for 1 =3, ..., r, there are < ! n * 1) ways of selecting A;. Thus
{

there are
n\fr—m\fn—n —n\ [fn—ny— o —my *)
ny Ny ng oy

different ordered partitions of A. Now (*) is equal to

n! (n—ny! (R—my— -+ —n,_)!
. L IR I
nlm—mny)! ny! (n—mn;— ny)! nl(n—ny— - —n)!

1
But this is equal to po L. since each numerator after the first is cancelled by the second
1

tng! - m,!
term in the denominator and since (n—n;— '+ —=n,)! =0! =1. Thus the theorem is proved.
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TREE DIAGRAMS
2.29. Construct the tree diagram for the number of permutations of {a, b, ¢}.

b———c¢ abe
a<
¢c———b ach
a ¢ bac
b<
c—————a bea
a——b cab
¢
<b a cba

The six permutations are listed on the right of the diagram.

2.30. A man has time to play roulette at most five 0 0
times. At each play he wins or loses a dollar. 1<
The man begins with one dollar and will stop ) 2
playing before the five times if he loses all his 0
money or if he wins three dollars, i.e. if he has
four dollars. Find the number of ways that the /
betting can occur. I—2 .
The tree diagram on the right describes the way the 1<

betting can occur. Each number in the diagram denotes
the number of dollars the man has at that point. Observe 3—2

that the betting can occur in 11 different ways. Note 2
that he will stop betting before the five times are up in 3<
4 4

only three of the cases.

Supplementary Problems

FACTORIAL
231. Compute: (i) 9!, (i) 10!, (iii) 11!

16! 14! 81 10!
232. Compute: (i) 737, @) {37, (i) 157, @v) isT-

1 —_ — 1
283, simplity: ) PHY, () iy, ) SR v G

PERMUTATIONS

234. (i) How many automobile license plates can be made if each plate contains 2 different letters
followed by 3 different digits? (ii) Solve the problem if the first digit cannot be 0.

2.35. There are 6 roads between 4 and B and 4 roads between B and C.
(i) In how many ways can one drive from 4 to C by way of B?
(ii) In how many ways can one drive roundtrip from A to C by way of B?

(iii) In how many ways can one drive roundtrip from A to C without using the same road more
than once?
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2.36.

2.37.

2.38.

2.39.

2.40.

241.

242.

2.43.

2.44.

2.45.

2.46.

247,

TECHNIQUES OF COUNTING [CHAP, 2

Find the number of ways in which 6 people can ride a toboggan if one of three must drive.

(i) Find the number of ways in which five persons can sit in a row.
(i) How many ways are there if two of the persons insist on sitting next to one another?

Solve the preceding problem if they sit around a circular table.

(i) Find the number of four letter words that can be formed from the letters of the word HISTORY.
(ii) How many of them contain only consonants? (iii) How many of them begin and end in a
consonant? (iv) How many of them begin with a vowel? (v) How many contain the letter Y?
(vi) How many begin with T and end in a vowel? (vii) How many begin with T and also contain S?
(viii) How many contain both vowels?

How many different signals, each consisting of 8 flags hung in a vertical line, can be formed from
4 red flags, 2 blue flags and 2 green flags?

Find the number of permutations that can be formed from all the letters of each word: (i) queue,
(il) committee, (iii) proposition, (iv) baseball.

(i) Find the number of ways in which 4 boys and 4 girls can be seated in a row if the boys and
girls are to have alternate seats.

(ii) Find the number of ways if they sit alternately and if one boy and one girl are to sit in
adjacent seats.

(iii) Find the number of ways if they sit alternately and if one boy and one girl must not sit in
adjacent seats.

Solve the preceding problem if they sit around a circular table.

An urn contains 10 balls. Find the number of ordered samples (i) of size 3 with replacement,
(ii) of size 3 without replacement, (iii) of size 4 with replacement, (iv) of size 5 without replacement.

Find the number of ways in which 5 large books, 4 medium-size books and 3 small books can be
placed on a shelf so that all books of the same size are together.

Consider all positive integers with 8 different digits. (Note that 0 cannot be the first digit.)
(i) How many are greater than 700? (ii) How many are odd? (iii) How many are even? (iv) How
many are divisible by 5?

(i) Find the number of distinct permutations that can be formed from all of the letters of the word
ELEVEN. (ii) How many of them begin and end with E? (iii) How many of them have the 3 E’s
together? (iv) How many begin with E and end with N?

BINOMIAL COEFFICIENTS AND THEOREM

2.48.

2.49.

2.50.

2.51.

252,

2.53.

2.54.

2 18
Compute: (i) (:) (ii) <;> (i) (124>: (iv) C:)’ v) (12) (vi) <15>'
. 9 . 7 6
Compute; (i) <3’ 5, 1>, (i1) (3' 2,2, 0)’ (ii) (2,2 1,1, 0>'

Expand and simplify: (1) (2z 23, (ii) (22 —3y)%, (i) (e +2b)5, (iv) (2a2— D)%

e () ()¢ () @)+ () - »
o ()= ()¢ () () e+ - »

Find the term in the expangion of (222 — 13°)® which contains 8.

+

I+

Find the term in the expansion of (3zy2— z2)7 which contains 5.
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COMBINATIONS

2.55.

2,56,

2.57.

2.58.

2.59.

2.60.

A class containsg 9 boys and 8 girls, (i) In how many ways can the teacher choose a committee of 47
(ii) How many of them will contain at least one girl? (iii) How many of them will contain exactly
one girl?

A woman has 11 close friends. (i) In how many ways can she invite 56 of them to dinner? (ii) In
how many ways if two of the friends are married and will not attend separately? (iii) In how
many ways if two of them are not on speaking terms and will not attend together?

There are 10 points 4,B,... in a plane, no three on the same line, (i) How many lines are
determined by the points? (ii) How many of these lines do not pass through A or B? (iii) How
many triangles are determined by the points? (iv) How many of these triangles contain the
point A? (v) How many of these triangles contain the side AB?

A student is to answer 10 out of 13 questions on an exam. (i) How many choices has he? (ii) How
many if he must answer the first two questions? (iii) How many if he must answer the first or
second question but not both? (iv) How many if he must answer exactly 3 of the first 5 questions?
(v) How many if he must answer at least 3 of the first 5 questions?

A man is dealt a poker hand (5 cards) from an ordinary playing deck. In how many ways can he
be dealt (i) a straight flush, (ii) four of a kind, (iii) a straight, (iv) a pair of aces, (v) two of a
kind (a pair)?

The English alphabet has 26 letters of which b are vowels.

i) How many b5 letter words containing 3 different consonants and 2 different vowels can be
formed?

(ii) How many of them contain the letter b?

(iii) How many of them contain the letters b and ¢?

(iv) How many of them begin with b and contain the letter ¢?
(v) How many of them begin with b and end with ¢?

(vi) How many of them contain the letters ¢ and b?

(vii) How many of them begin with a and contain b?

(viii) How many of them begin with b and contain a?

(ix) How many of them begin with a and end with b?

(x) How many of them contain the letters a, b and ¢?

ORDERED AND UNORDERED PARTITIONS

2.61.

2.62.

2.63.

2.64.

2.65.

2.66.

2.67.

In how many ways can 9 toys be divided evenly among 3 children?
In how many ways can 9 students be evenly divided into three teams?

In how many ways can 10 students be divided into three teams, one containing 4 students and
the others 37

There are 12 balls in an urn. In how many ways can 3 balls be drawn from the urn, four times
in succession, all without replacement?

In how many ways can a club with 12 members be partitioned into three committees containing
5, 4 and 3 members respectively?

In how many ways can n students be partitioned into two teams containing at least one student?

In how many ways can 14 men be partitioned into 6 committees where 2 of the committees contain
3 men and the others 2?

TREE DIAGRAMS

2.68.

2.69.

Construct the tree diagram for the number of permutations of {a, b, ¢, d}.

Find the product set {1,2,3} X {2,4} X {2,8,4} by constructing the appropriate tree diagram.
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2.70.

271,

2.72.

2.73.

2.74.

2.31.

2.32.

2.33.

2.34.

2.35.

2.36.

2.37.

2.38.

2.39.

2.40.

2.41.

TECHNIQUES OF COUNTING [CHAP. 2

Teams A and B play in a basketball tournament. The first team that wins two games in a row or a
total of four games wins the tournament., Find the number of ways the tournament can occur.

A man has time to play roulette five times. He wins or loses a dollar at each play. The man begins
with two dollars and will stop playing before the five times if he loses all his money or wins three
dollars (i.e. has five dollars). Find the number of ways the playing can occur.

A man is at the origin on the x-axis and takes a unit step either to the left or to the right. He
stops after 5 steps or if he reaches 3 or —2. Construct the tree diagram to describe all possible
paths the man can travel.

In the following diagram let A, B, ..., F denote islands, and the lines connecting them bridges.

A man begins at A and walks from island to island. He stops for lunch when he cannot continue
to walk without crossing the same bridge twice. Find the number of ways that he can take his walk

before eating lunch.
O—O—O—0

Consider the adjacent diagram with nine points A, B,C, R, S, T, X, A—B—C
Y,Z. A man begins at X and is allowed to move horizontally or ver- l | |
tically, one step at a time. He stops when he cannot continue to walk R S 7

without reaching the same point more than once. Find the number of
ways he can take his walk, if he first moves from X to B. (By sym- l | I
metry, the total number of ways is twice this.) X—YyY—12Z

Answers to Supplementary Problems
(i) 362,880 (ii) 3,628,800 (iti) 39,916,800
(i) 240 (ii) 2184 (iii) 1/90 (iv) 1/1716
@n+1 (i) en—D=n2—n (i) Vnr+Dr+2)] () e—nr-—r+1)
(i) 26251098 = 468,000 (if) 26+25+9+9+8 = 421,200
(i) 6°4=24  (ii) 6+4+4+6=24.24 =576  (iii) 6°43+5 = 360
3+5+4+3+2+1 =360
(i) 51 =120 (ii) 4+2!1+3! =48

(i) 41 =24 (i) 213! = 12

(i) T+6+5+4 =840 (ifi) 5+5+4+4 = 400 (v) 4+6+5-4 = 480 (vii) 1+3¢504 = 60

(i) 5od4+3+2 = 120 (iv) 26+5+4 = 240 (vi) 1°5+4+2 = 40 (viii) 4+3+5+4 = 240
8!

iTarar - 420

. 5! .. 91! 11! . 8!
() 131 = 30 (ii) 272191 — 45,360 (iii) 5T3131 — 1,663,200 (iv) 318191 = 5040
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242, (i) 2-4!+4! =1152 (ii) 2-7-3!-3! =504  (iii)) 1152 — 504 = 648
243. (i) 31+4! =144  (ii) 2-3!-31 =72 (iii) 144 —72 =172

244. (i) 10-10-10 = 1000 (iii) 10-10-10+10 = 10,000
(ii) 10+9+8 =720 (iv) '10-9+8+7+6 = 30,240

245. 31514!3! = 103,680
246, (i) 3+98 = 216 (i) 8-8:5 = 320

(iii) 9+8+1 = 72 end in 0, and 8+8-4 = 256 end in the other even digits; hence, altogether,
72+ 266 = 328 are even.

(iv) 9+8¢1 = 72 end in 0, and 8<8+1 = 64 end in 5; hence, altogether, 72 + 64 = 136 are
divisible by 5.
6! . 4!
247. (i) 37 =120 (ii) 4! =24 (iii) 43! =24 (iv) 21~ 12

248. (i) 10 (ii) 35 (iii) 91 (iv) 15 (v) 1140 (vi) 816
249. (i) 504 (ii) 210 (iii) 180

250, (i) 8x% + 12x2y2 + 6xyt + y®
(ii) «8 — 1228y + 54xty? — 108x2y3% + Blyt
(iii) a5/32 + 5a*b/8 + 5a3b2 + 20a2b3 + 40abt + 32b5
(iv) 64alZ — 192a10b + 240a8h2 — 160a8h3 + 60ab? — 12a2b5 - b6

251. Hint. Expand (1+ 1)n. 253, TOx8y12

252, Hint. Expand (1— 1), 254, 945x3y828

255. (i) <142> 495, (i) (142>—<Z> = 3609, (iii) 3(2) = 252

2.56. (i) <151 > 462,  (ii) <§>+<z> = 210, (iii) (2>+2-<2> = 378

257, (i) (12()) = 45, (i) <§> = 28, (iii) <13°> = 120, (iv) <:> = 36, (v) 8

258. (i) <ig> (133 > = 286 (iv) <Z><g> = 80
W ()= (5) - o (5)@) + ()« Q) ==
(iii) 2 <191> = 2-<121> = 110

259, (i) 4+10 = 40, (ii) 18348 = 624, (iii) 1045 — 40 = 10,200. (We subtract the number of straight

4\/12 4\/12
flushes.) (iv) <2><3> + 43 = 84,480, (v) 13- <2><3> « 43 = 1,098,240

21
260. (i) < 3><
o [20N\(5 ) 20
(ii) 2 o «h! = 228,000 (vi) 4= 9 * 5!

Il

1140 (ix) 4 - <220> + 3! = 4560

o o
~—
o
I

= 1,696,000 vy 19- <5> + 3!

91,200 (x) 4-19:5! = 9120

b . 20
(iti) 19 - <2>° 5! = 22,800 (vii) 4+ <2> 4! = 18,240
(iv) 19 - <Z> 4! = 4560 (viii) 18,240 (same ag (vii))



36

2.61.

2.62. 1680/3! = 280 or

2.63. 4,1‘,?!!3!-% = 2100
2.64. §T§¥§T§T = 369,600
2.65. ﬁ%!?! = 27,720
2.69.

The eighteen elements of the product set are listed to the right of the tree diagram.

2.70. 14 ways

TECHNIQUES OF COUNTING

() - =
o () - e

266, 2n—1-—1

14! 1

267 373787212121 3141
2
2<3
4
1
2
4<3
4
2
2<3
4
2
2
4<3
4
2
2<3
4
3
2
4<3
4

2.71. 20 ways (as seen in the following diagram):

)

3<
l—"__ §<
1<

= 3,153,150

12,2
1,2,8)
1,2,4)

1,4,2)
1,4,3)
1,4, 4)

2,22
2,2,8)
(2,2,4)

(2,4,2)
(2,4,3)
2, 4, 4)

3,22
3,2,3)
(3,2,4)

(3,4,2)
(8,4, 8
(8,4, 4)

[CHAP. 2
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272. Hint. The tree is essentially the same as the tree of the preceding problem.

2.73. The appropriate tree diagram follows:

B
F c /D

There are eleven ways to take his walk. Observe that he must eat his lunch at either B, D or E.

2.,74. The appropriate tree diagram follows:

S Y
c T<
Z Y
A B C
T<
s< z Y
Y- Z T
Y
C B A
S T<
Z Y
Y- V4 T C B

There are 10 different trips. (Note that in only 4 of them are all nine points covered.)

37



Chapter 3

Introduction to Probability

INTRODUCTION

Probability is the study of random or nondeterministic experiments. If a die is tossed
in the air, then it is certain that the die will come down, but it is not certain that, say,
a 6 will appear. However, suppose we repeat this experiment of tossing a die; let s be
the number of successes, i.e. the number of times a 6 appears, and let n be the number of
tosses. Then it has been empirically observed that the ratio f = s/n, called the relative
frequency, becomes stable in the long run, i.e. approaches a limit. This stability is the
basis of probability theory.

In probability theory, we define a mathematical model of the above phenomenon by
assigning “probabilities” (or: the limit values of the relative frequencies) to the “events”
connected with an experiment. Naturally, the reliability of our mathematical model for a
given experiment depends upon the closeness of the assigned probabilities to the actual
relative frequency. This then gives rise to problems of testing and reliability which form
the subject matter of statisties.

Historically, probability theory began with the study of games of chance, such as
roulette and cards. The probability p of an event A was defined as follows: if A can occur
in 8 ways out of a total of n equally likely ways, then

p:P(A):%

For example, in tossing a die an even number can occur in 3 ways out of 6 “equally likely”
ways; hence p =2= 4. This classical definition of probability is essentially circular since
the idea of “equally likely” is the same as that of “with equal probability” which has not
been defined. The modern treatment of probability theory is purely axiomatic. This means
that the probabilities of our events can be perfectly arbitrary, except that they must satisfy
certain axioms listed below. The classical theory will correspond to the special case of

so-called equiprobable spaces.

SAMPLE SPACE AND EVENTS

The set S of all possible outcomes of some given experiment is called the sample space.
A particular outcome, i.e. an element in S, is called a sample point or sample. An event A
is a set of outcomes or, in other words, a subset of the sample space S. The event {a} con-
sisting of a single sample a € § is called an elementary event. The empty set @ and S
itself are events; () is sometimes called the impossible event, and S the certain or sure event.

We can combine events to form new events using the various set operations:
(i) AUB is the event that occurs iff A occurs or B occurs (or both);
(ii) ANB is the event that occurs iff A occurs and B occurs;
(iii) A€, the complement of A4, is the event that occurs iff A does not occur.
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Two events A and B are called mutually exclusive if they are disjoint, i.e. if ANB = Q.
In other words, A and B are mutually exclusive if they cannot occur simultaneously.

Example 3.1:

Example 3.2:

Example 3.3:

Example 3.4:

Experiment: Toss a die and observe the number that appears on top. Then the
sample space consists of the six possible numbers:

S = {1,2,8,4,5, 6}

Let A be the event that an even number occurs, B that an odd number occurs and
C that a prime number occurs:

A4 = {2,4,6}, B = {1,3,6}, C = {2,8,5}
Then:
AuC

{2, 8,4, 5, 6} is the event that an even or a prime number occurs;
BnC = {8,5} is the event that an odd prime number occurs;

Cc = {1, 4, 6} is the event that a prime number does not occur.

Note that A and B are mutually exclusive: ANB = ; in other words, an even
number and an odd number cannot occur simultaneously.

Experiment: Toss a coin 3 times and observe the sequence of heads (H) and
tails (T) that appears. The sample space S consists of eight elements:

S = {HHH, HHT, HTH, HTT, THH, THT, TTH, TTT}

Let A be the event that two or more heads appear consecutively, and B that all
the tosses are the same:

A = {HHH, HHT, THH} and B = {HHH, TTT}

Then ANB = {HHH} is the elementary event in which only heads appear. The
event that 5 heads appear is the empty set .

Experiment: Toss a coin until a head appears and then count the number of times
the coin was tossed. The sample space of this experiment is § = {1,2,3,...,=}.
Here » refers to the case when a head never appears and so the coin is tossed an
infinite number of times. This is an example of a sample space which is countably
nfinite.

Experiment: Let a pencil drop, head first, into a
rectangular box and note the point on the bottom
of the box that the pencil first touches. Here S
consists of all the points on the bottom of the box.
Let the rectangular area on the right represent
these points. Let A and B be the events that the
pencil drops into the corresponding areas illus-
trated on the right. This is an example of a sam-
ple space which is not finite nor even countably S
infinite, i.e. which is uncountable,

Remark: If the sample space S is finite or countably infinite, then every subset of S is
an event. On the other hand, if S is uncountable, as in Example 3.4, then for
technical reasons (which lie beyond the scope of this text) some subsets of S
cannot be events. However, in all cases the events shall form a e¢-algebra £ of
subsets of S.
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AXIOMS OF PROBABILITY

Let S be a sample space, let € be the class of events, and let P be a real-valued function
defined on €. Then P is called a probability function, and P(A) is called the probability of
the event A if the following axioms hold:

[P:] For every event A, 0 = P(4A)=1.
[Pz] P(S)=1.
[Ps] If A and B are mutually exclusive events, then
P(AUB) = P(A) + P(B)
[Ps] If Ay, A, ... is a sequence of mutually exclusive events, then

P(A,UAU---) = P(Ay) + P(As) + -

The following remarks concerning the axioms [P;] and [P4] are in order. First of all,

using [Ps;] and mathematical induction we can prove that for any mutually exclusive events
Al, AZ, ey An,
P(A1UAU -+ UA,) = P(Ay) + P(A2) + - - - + P(A,) *)

We emphasize that [P4] does not follow from [Ps] even though (*) holds for every positive
integer n. However, if the sample space S is finite, then clearly the axiom [P4] is superfluous.

We now prove a number of theorems which follow directly from our axioms.
Theorem 3.1: If @ is the empty set, then P(®) = 0.
Proof: Let A be any set; then A and @ are disjoint and AUQ = A. By [Ps),
P(A) = P(AUQ) = P(A) + P(D)
Subtracting P(4) from both sides gives our result.
Theorem 3.2: If Ac is the complement of an event A, then P(A¢) = 1 — P(A).

Proof: The sample space S can be decomposed into the mutually exclusive events A and
Ac; that is, S=AUA°. By [P:] and [Ps] we obtain

1 = P(S) = P(AUA®) = P(4) + P(A°)

from which our result follows.

Theorem 3.3: If ACB, then P(A) = P(B).
Proof. If ACB, then B can be decomposed into the mutually @
exclusive events A and B\ A (as illustrated on the right).
Thus B\4 B
P(B) = P(A)+ P(B\ A)
The result now follows from the fact that P(B\ 4) = 0. B 35 ahaded.

Theorem 3.4: If A and B are any two events, then
P(AN B) = P(A)— P(ANnB)

Proof. Now A can be decomposed into the mutually ex-
clusive events AN\ B and ANB; that is, A = (A\ B)U(ANB).
Thus by [Ps],

P(A)y = P(ANB) + P(ANB) A 3

from which our result follows. A is shaded.
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Theorem 3.5: If A and B are any two events, then
P(AUB) = P(A) + P(B) — P(ANB)

Proof. Note that AUB can be decomposed into the mutually
exclusive events A\ B and B; that is, AUB = (A\ B)UB. Thus
by [P3] and Theorem 3.4,

P(AUB) = P(A\ B) + P(B)
= P(A) — P(ANB) + P(B) A B
= P(A) + P(B) — P(ANB) AUB is shaded.
which is the desired result.

Applying the above theorem twice (Problem 3.23) we obtain

Corollary 3.6: For any events A, B and C,
P(AUBUC) = P(A)+ P(B)+ P(C) — P(ANB) - P(ANC) — P(BNC) + P(ANBNC)

FINITE PROBABILITY SPACES

Let S be a finite sample space; say, S = {61, a2, ...,a:}. A finite probability space is
obtained by assigning to each point a; € S a real number p;, called the probability of a;
satisfying the following properties:

(i) each p: is nonnegative, p; =0
(ii) the sum of the piisone, P1+p2+ -+ +pn = 1.

The probability P(A) of any event A, is then defined to be the sum of the probabilities of
the points in A. For notational convenience we write P(a;) for P({a:}).

Example 3.5: Let three coins be tossed and the number of heads observed; then the sample space
is §=1{0,1,2,3}. We obtain a probability space by the following assignment

PO) = % P =4, P2 =% and P@ =}
gsince each probability is nonnegative and the sum of the probabilities is 1. Let A

be the event that at least one head appears and let B be the event that all heads

or all tails appear:
A =1{,2,8 and B = {0,383}

Then, by definition,
PA) = PO+ P2)+P3) = §+8%+% = %
and PB) = PO)+P@) = t+4 = %

Example 3.6: Three horses A, B and C are in a race; A is twice as likely to win as B and B is
twice as likely to win as C. What are their respective probabilities of winning,
i.e. P(A4), P(B) and P(C)?

Let P(C) = p; since B is twice as likely to win as C, P(B) = 2p; and since
A is twice as likely to win as B, P(A) = 2P(B) = 2(2p) = 4p. Now the sum of the
probabilities must be 1; hence

p+2p+4p=1 or 7p:1 or p:%
Accordingly,
PA) = 4p = 4, P(B) = 2p = %, P(C):p:%
Question: What is the probability that B or C wins, i.e. P({B,C})? By definition
P({B,C}) = PB)+P(IC) = 2+ = %
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FINITE EQUIPROBABLE SPACES

Frequently, the physical characteristics of an experiment suggest that the various
outcomes of the sample space be assigned equal probabilities. Such a finite probability
space S, where each sample point has the same probability, will be called an equiprobable
or uniform space. In particular, if S contains n points then the probability of each point
is 1/n. Furthermore, if an event A contains r points then its probability is r- % = % In

other words, ber of el i A
PA) = number of elements in

number of elements in S

P4) = number of ways that the event A can occur

or number of ways that the sample space S can occur

We emphasize that the above formula for P(A) can only be used with respect to an
equiprobable space, and cannot be used in general.

The expression “at random” will be used only with respect to an equiprobable space;
formally, the statement “choose a point at random from a set S shall mean that S is an
equiprobable space, i.e. that each sample point in S has the same probability.

Example 3.7: Let a card be selected at random from an ordinary deck of 52 cards. Let
A = {the card is a spade}
and B = ({the card is a face card, i.e. a jack, queen or king}

We compute P(A), P(B) and P{ANB). Since we have an equiprobable space,

P(A) = number of spades _ 13 _ 1 number of face cards _ 12 _ 3

~ “number of cards 52 4 P(B) = number of cards 52 13
_ number of spade face cards _ 3
P(ANB) = number of cards 52
Example 3.8: Let 2 items be chosen at random from a lot containing 12 items of which 4 are

defective. Let

A = {both items are defective} and B = ({both items are non-defective}
Find P(A) and P(B). Now
S can occur in (122) = 66 ways, the number of ways that 2 items can be
chosen from 12 items;

A ecan occur in (;) = 6 ways, the number of ways that 2 defective items
can be chosen from 4 defective items;

B can occur in (g) = 28 ways, the number of ways that 2 non-defective
items can be chosen from 8 non-defective items.
Accordingly, P(A) =g =1 and P(B) =2 =14,

Question: What is the probability that at least one item is defective? Now
C = {at least one item is defective}

is the complement of B; that is, C = Bc. Thus by Theorem 3.2,

P(C) = P(B) = 1-P(B) = 1—4 =18
The odds that an event with probability p occurs is defined to be the ratio p: (1 — ).
Thus the odds that at least one item is defective is ;—2 : % or 19:14 which is read
“19 to 14”.
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Example 39: (Classical Birthday Problem.) We seek the probability p that n people have dis-
tinet birthdays. In solving this problem, we ignore leap years and assume that a
person’s birthday can fall on any day with the same probability.

Since there are n people and 365 different days, there are 365" ways in which
the n people can have their birthdays. On the other hand, if the = persons are to
have distinct birthdays, then the first person can be born on any of the 365 days,
the second person can be born on the remaining 364 days, the third person can be
born on the remaining 363 days, etc. Thus there are 365+364+363 - (365 —n+1)
ways the n persons can have distinct birthdays. Accordingly,

_ 365+364+363---(365—n+1) _ 365 364 363  365-—n+1

365 ~ 365 365 365 365

It can be shown that for n =23, p < 1; in other words, amongst 23 or more
people it is more likely that at least two of them have the same birthday than
that they all have distinet birthdays.

INFINITE SAMPLE SPACES

Now suppose S is a countably infinite sample space; say S = {ai,@s, ...}. As in the
finite case, we obtain a probability space by assigning to each a; € S a real number p;, called
its probability, such that

i) p» =0 and (i) P+p+--- = X =1
i=1
The probability P(A) of any event A is then the sum of the probabilities of its points.

Example 3.10: Consider the sample space S =1{1,2,8,...,=} of the experiment of tossing a
coin till a head appears; here n denotes the number of times the coin is tossed.
A probability space is obtained by setting

p) = 4, p@ =4 ..., pm) = /2" ..., p(®) =0
The only uncountable sample spaces S which we will consider here are those with some
finite geometrical measurement m(S) such as length, area or volume, and in which a point

is selected at random. The probability of an event A, i.e. that the selected point belongs
to A, is then the ratio of m(A) to m(S); that is,

length of A areaof A volume of A
length of S °F PA) = teaofs O P@A) = lumeof S

Such a probability space is said to be uniform.

P(A) =

Example 3.11: On the real line R, points ¢ and & are selected at random such that —2=b=0
and 0 = a = 3, as shown below. Find the probability p that the distance d be-
tween a and b is greater than 3.

-2 b 0 a 3
The sample space S consists of the or- ol o
dered pairs (@, b) and so forms the rectangu- e
lar region shown in the adjacent diagram. - P
On the other hand, the set A of points (a, b) 2 il 2 L

for which d =a—b > 8 consists of those '
points of S which lie below the line z—y = 3, iy
and hence forms the shaded area in the S A
diagram. Thus
_ __areaofA _ 2 1 /
p = PA) = areaof S ~ 6 ~ 3 P

Remark: A finite or countably infinite probability space is said to be discrete, and an
uncountable space is said to be nondiscrete.
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Solved Problems

SAMPLE SPACES AND EVENTS

3.1. Let A and B be events. Find an expression and exhibit the Venn diagram for the
event that: (i) A but not B occurs, i.e. only A occurs; (ii) either A or B, but not
both, occurs, i.e. exactly one of the two events occurs.

(i} Since A but not B occurs, shade the area of A outside of B as in Figure (a) below. Note

that Be, the complement of B, occurs since B does not occur; hence A and B¢ occurs. In other
words, the event is 4 N Be,

A but not B occurs. Either A or B, but not both, occurs.
(a) ()

(ii) Since A or B but not both occurs, shade the area of A and B except where they intersect as
in Figure (b) above. The event is equivalent to A but not B occurs or B but not A occurs.
Now, as in (i), A but not B is the event ANB¢c, and B but not A is the event BNAc. Thus
the given event is (ANnBc) U (BNA¢<).

32. Let A, B and C be events. Find an expression and exhibit the Venn diagram for
the event that (i) A and B but not C occurs, (ii) only A occurs.

(i) Since A and B but not C occurs, shade the intersection of A and B which lies outside of C,
as in Figure (a) below. The event is ANBNCe.

AN
D

A and B but not C occurs. Only A occurs.
(a) (b)

(ii) Since only A is to occur, shade the area of A which lies outside of B and of C, as in Figure (b)
above. The event is AnBcnCe,

3.3. Let a coin and a die be tossed; let the sample space S consist of the twelve elements:
S = {H1, H2, H3, H4, H5, H6, T1, T2, T3, T4, T5, T6}

(i) Express explicitly the following events: A = {heads and an even number ap-
pear}, B = {a prime number appears}, C = {tails and an odd number appear}.

(ii) Express explicitly the event that: (¢) A or B occurs, (b) B and C occurs,
(¢) only B occurs.

(iii) Which of the events A, B and C are mutually exclusive?
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(i) To obtain A, choose those elements of S consisting of an H and an even number; A =
{H2, H4, H6}.

To obtain B, choose those points in S consisting of a prime number: B = {H2, H3, Hb, T2, T3, T5}.

To obtain C, choose those points in S consisting of a T and an odd number: C = {T1, T3, T5}.
(i) (@) A or B=AUB = {H2, H4, H6, H3, H5, T2, T3, T5}

(b)) B and C =BnC = {T3,T5}

(¢) Choose those elements of B which do not liein A or C: BnAenCc = {H3, H5, T2}.

(iii) A and C are mutually exclusive since AnC = @,

FINITE PROBABILITY SPACES

34.

3.5.

3.6.

Suppose a sample space S consists of 4 elements: S = {ai,as @3, 2:s}. Which func-
tion defines a probability space on S?

(i) Pla) =4, Plag) =4, Plas) = &, Plasg) = 4.

(ii) P(a1) = 4, Plaz) = 4§, Plas) = —}, P(as) = 4.

(iif) P(as) = 4, P(as) = L, P(as) = §, Plas) = 4.

(iv) P(a:) = 4, P(az) = §, P(aa) = 1, Plas) = 0.

(i) Since the sum of the values on the sample points is greater than one, 4 +4+1+4 = 37%,
the function does not define a probability space on S.

(ii) Since P(ag) = —1, a negative number, the function does not define a probability space on S.

(iii) Since each value is nonnegative, and the sum of the values is one, 4 +4+3+§ =1, the
function does define a probability space on S.

(iv) The values are nonnegative and add up to one; hence the function does define a probability
space on S.

Let S = {a1,az a3 a4}, and let P be a probability function on S.

(i) Find P(a.) if P(a:) =34, P(as) =%, P(ad) = 3.

(ii) Find P(a:) and P(as) if P(as) = P(as) = 1 and P(a:) = 2P(az).

(iii) Find P(ay) if P({as, as}) = %, P({as, as}) =4 and P(az) = $.

(i) Let P(a;) = p. Then for P to be a probability function, the sum of the probabilities on the
sample points must be one: p+4+4+L=1 or p=45.

(ii) Let P(a;) = p, then P(a,) = 2p. Hence 2p+p+1+1=1 or p=} Thus P(a) =} and
P(a,y) = %

(iii) Let P(a,) = p. Plas) = P({ay ag}) — P(as) = % —
P(ag) = P({ag ay}) — P(ay) = % —
Then p+4+4+4 =1 or p=4, thatis, P(ay) = 3.

P =1
P =1

A coin is weighted so that heads is twice as likely to appear as tails. Find P(T)
and P(H).

Let P(T) = p; then P(H) = 2p. Now set the sum of the probabilities equal to one: p+2p =1
or p=1%. Thus P(T)=p=1} and PH)=2p= 3.
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Two men, m, and m:, and three women, w,, w2 and ws, are in a chess tournament.
Those of the same sex have equal probabilities of winning, but each man is twice
as likely to win as any woman. (i) Find the probability that a woman wins the
tournament. (ii) If m; and w, are married, find the probability that one of them
wins the tournament.

Set P(w;) = p; then P(wy) = P(wz) =p and P(m;) = P(my) = 2p. Next set the sum of the
probabilities of the five sample points equal to one: p+p+p+2p+2p=1 or p=1.

We seek (i) P({w, wy, wz}) and (ii) P({m,,w,}). Then by definition,

P({wy, wo, wg}) = Plwy) + Plwy) + Plwy) = 1 +1+1L =3
P({mg,w}) = Plmy) + Plw)) = 2+1% = ¢

Let a die be weighted so that the probability of a number appearing when the die
is tossed is proportional to the given number (e.g. 6 has twice the probability of
appearing as 3). Let A = {even number}, B = {prime number}, C = {odd number}.

(i) Describe the probability space, i.e. find the probability of each sample point.
(ii) Find P(4), P(B) and P(C).

(iii) Find the probability that: (a¢) an even or prime number occurs; (b) an odd
prime number occurs; (¢) 4 but not B occurs.

(i) Let P(1) = p. Then P(2) = 2p, P(3) = 3p, P(4) = 4p, P(b) = 5p and P(6) = 6p. Since the sum
of the probabilities must be one, we obtain p+2p+3p+4p+5p+6p =1 or p = 1/21. Thus

Pl) =g, P@ =g, PB)=1i P@=3, PG =gz PE-=

3oz

(i) P(A) = P({2,4,6}) = 4, P(B) = P({2,3,6}) = &, P(C) = P({1,3,5) = 3.

(iii) (@) The event that an even or prime number occurs is AUB = {2,4,6,3,5}, or that 1 does
not occur. Thus P(AUB) = 1 — P(1) = 5.

(b) The event that an odd prime number occurs is BNC = {8,5}. Thus P(BNnC) =
P({8,5}) = .

(¢) The event that A but not B occurs is AnBc = {4,6}. Hence P(ANB¢) = P({4,6}) :;-‘l’.

FINITE EQUIPROBABLE SPACES

3.9.

Determine the probability p of each event:

(i) an even number appears in the toss of a fair die;

(ii) a king appears in drawing a single card from an ordinary deck of 52 cards;
(iii) at least one tail appears in the toss of three fair coins;

(iv) a white marble appears in drawing a single marble from an urn containing
4 white, 3 red and 5 blue marbles.

(i) The event can occur in three ways (a 2,4 or 6) out of 6 equally likely cases; hence p = % = %

1

(ii) There are 4 kings among the 52 cards; hence p = % = 13-

(iii) If we consider the coins distinguished, then there are 8 equally likely cases: HHH,HHT,
HTH, HTT,7THH, THT, TTH, TTT. Only the first case is not favorable to the given event;
hence p = 3.

(iv) There are 4+ 3+ 5 = 12 marbles, of which 4 are white; hence p = 112 = %
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3.10.

3.11.

3.12.

3.13.

Two cards are drawn at random from an ordinary deck of 52 cards. Find the proba-
bility p that (i) both are spades, (ii) one is a spade and one is a heart.

There are (522) = 1326 ways to draw 2 cards from 52 cards.

(i) There are (l,f) = 78 ways to draw 2 spades from 13 spades; hence

number of ways 2 spades can be drawn _ 78 1
P = Lumber of ways 2 cards can be drawn 1326 17

(ii) Since there are 13 spades and 13 hearts, there are 1313 = 169 ways to draw a spade and a

heart; hence p = % = 1%35.

Three light bulbs are chosen at random from 15 bulbs of which 5 are defective.
Find the probability p that (i) none is defective, (ii) exactly one is defective, (iii) at
least one is defective.

There are ('35) = 455 ways to choose 3 bulbs from the 15 bulbs.

(i} Since there are 15 — b = 10 nondefective bulbs, there are ( ) = 120 ways to choose 3 non-

defective bulbs. Thus p = 1?5) Z'T

(ii) There are b defective bulbs and (10) = 45 different pairs of nondefective bulbs; hence there

are 5+ 45 = 225 ways to choose 3 bulbs of which one is defective. Thus p = fgg ;?

(ili) The event that at least one is defective is the complement of the event that none are defective

which has, by (i), probability 9% Hence p=1 —xu %.

Two cards are selected at random from 10 cards numbered 1 to 10. Find the proba-
bility p that the sum is odd if (i) the two cards are drawn together, (ii) the two
cards are drawn one after the other without replacement, (iii) the two cards are
drawn one after the other with replacement.

(i) There are (120) = 45 ways to select 2 cards out of 10. The sum is odd if one number is odd

and the other is even. There are 5 even numbers and 5 odd numbers, hence there are

5+5 = 25 ways of choosing an even and an odd number. Thus p = f—: 9

(ii) There are 10-9 = 90 ways to draw two cards one after the other without replacement.
There are 55 = 25 ways to draw an even number and then an odd number, and 55 = 25
ways to draw an odd number and then an even number; hence p = 25;)25 = g—g = g.

(iii) There are 10+10 = 100 ways to draw two cards one after the other with replacement. As

in (ii), there are 5-5 = 25 ways to draw an even number and then an odd number, and
5+5 = 25 ways to draw an odd number and then an even number; hence p = 2513025 = 1%% = §.

Six married couples are standing in a room.

(i) If 2 people are chosen at random, find the probability p that (a) they are
married, (b) one is male and one is female.

(ii) If 4 people are chosen at random, find the probability » that (e¢) 2 married
couples are chosen, (b) no married couple is among the 4, (¢) exactly one
married couple is among the 4.

(iii) If the 12 people are divided into six pairs, find the probability » that (a) each
pair is married, (b) each pair contains a male and a female.
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(i) There are (122) = 66 ways to choose 2 people from the 12 people.

(@) There are 6 married couples; hence p = B%: it-
(b) There are 6 ways to choose a male and 6 ways to choose a female; hence p = 6—'39 =

(o

1°

(i) There are (142) = 495 ways to choose 4 people from the 12 people.
(a) There are (g) = 15 ways to choose 2 couples from the 6 couples; hence p = ;19% = %
(b) The 4 persons come from 4 different couples. There are (2) = 15 ways to choose 4 couples

from the 6 couples, and there are 2 ways to choose one person from each couple. Hence
_ 2.2.2.2.15 _ 18
P="395 ~ 3%
(¢) This event is mutually disjoint from the preceding two events (which are also mutually
disjoint) and at least one of these events must occur. Hence p+§-13+ % =1 or p =13—g.

(iili) There are ﬁ%‘ﬁ = 12—23' ways to partition the 12 people into 6 ordered cells with 2 people
in each.

(@) The 6 couples can be placed into the 6 ordered cells in 6! ways. Hence p = ;2(.,%;= Tlags-

(b) The six men can be placed one each into the 6 cells in 6! ways, and the 6 women can be
8! 6! 16

placed one each into the 6 cells in 6! ways. Hence p = ;558 = 33;-

A class contains 10 men and 20 women of which half the men and half the women
have brown eyes. Find the probability » that a person chosen at random is a man
or has brown eyes.

Let A = {person is a man} and B = {person has brown eyes}. We seek P(4UB).
Then P(A)=3=3, PB)=3 =% PANB)=2 =% Thus by Theorem 3.5,
p = PAUB) = P(A)+ PB)—P(ANnB) = 1 +4-3} = %

UNCOUNTABLE UNIFORM SPACES

3.15.

3.16.

A point is selected at random inside a circle. Find the
probability p that the point is closer to the center of the
circle than to its circumference.

Let S denote the set of points inside the circle with radius 7,
and let A denote the set of points inside the concentric circle of
radius 4. (Thus A consists precisely of those points of S which
are closer to its center than to its circumference.) Accordingly,

areaof A _ 7(372 _ 1

p = P4) = area of S 7re 4

Consider the Cartesian plane R2, and let X denote the subset of points for which
both coordinates are integers. A coin of diameter 4 is tossed randomly onto the
plane. Find the probability p that the coin covers a point of X.

Let S denote the set of points inside a square with corners

(m,n+1) m+1,n+1)
(m,n), (mn+1), (m+1l,n), m+l,n+1) € X
Let A denote the set of points in S with distance less than } from
any corner point. (Observe that the area of A is equal to the area
inside a circle of radius 1.) Thus a coin whose center falls in S will S
cover a point of X if and only if its center falls in a point of A.
Accordingly, @
_ _ areaof A __ 7 _ T
p = P4) = areaof S ~ 1 ~ 16 2 ‘P\ /.
Note. We cannot take S to be all of R? because the latter has (m, n) (m+1,n)

infinite area. A is shaded.
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3.17.

Three points a, b and ¢ are selected at random from the
circumference of a circle. Find the probability p that the
points lie on a semicircle.

Suppose the length of the circumference is 2s. Let x denote

the clockwise arc length from a to b, and let ¥ denote the clockwise
are length from a to ¢. Thus

0<2<2s and 0<y<2s (*)

Let S denote the set of points in R? for which condition (*) holds. 28
Let A denote the subset of S for which any of the following condi- (iii) 5
tions holds: (ii)

) =y<s (iif) x <8 and y—x > s N A

(ii) z,y > s (iv) y<8 and x—y > s ;
Then A consists of those points for which a, b and ¢ lie on a semi- ® (iv)
circle. Thus _ aresofd _ 32 _ 3 5 £ ’—

T areaof § = 432 T 4

A is shaded.

MISCELLANEOUS PROBLEMS

3.18.

3.19.

3.20.

3.21.

Let A and B be events with P(4) = §, P(B) =4 and P(ANB)=1}. Find (i) P(AUB),
(ii) P(A°) and P(B°), (iii) P(A°NB°), (iv) P(A°UB), (v) P(ANBY), (vi) P(BNA").

(i) P(AuUB) = P(A)+ P(B)— P(AnB) = §+3 -1t =%
(ii)y P(A9) = 1-PA) =1—-8 =% and PB)=1—-PB) =1—-% =1}
(iii) Using De Morgan’s Law, (AUB)c = Acn B¢, we have
P(AcnB¢) = P(AUB)) = 1—-P(AUB) = 1—§% = §
(iv) Using De Morgan’s Law, (ANB)c = AcUBe¢, we have

P(AcUBc) = P((AnBY) = 1—PAnB) = 1—-1%1 = §
Equivalently,
- P(AcUB?) = P(A9) + P(BY) —P(AnB) = §+4—§ =}

(v) P(ANBr)

P(AN\B) = P(A)—P(ANB) = § -} = }

(vi) P(BnAc) = P(B)—P(ANB) = §—1 = }

Let A and B be events with P(AUB) = 4, P(A°) = $ and P(ANB) = {. Find
(i) P(A), (i) P(B), (iii) P(ANB").

(i) PA) =1—PA) =1—% =}
(ii) Substitute in P(AUB) = P(A) + P(B) — P(ANB) to obtain § = } + P(B) —1 or P(B) = }.

(iii) P(AnBc) = P(A)—P(AnB) = } -1 = &

Find the probability p of an event if the odds that it will occur are a:b, that is,
“a to b”.
The odds that an event with probability p occurs is the ratio p: (1 —p). Hence
Y4 a a

i—p =% O bp = a—ap or apt+tbp = a or P = TT%

Find the probability p of an event if the odds that it will occur are “3 to 2”.

lf—p =2 from which p = % We

[<]

2 an also use the formula of the preceding problem to obtain
the answer directly: » = 375 % =

oI
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3.22. A die is tossed 100 times. The following table lists the six numbers and frequency

3.23.

3.24.

with which each number appeared:

Number 1 2 3 4 5 6

Frequency 14 17 20 18 15 16

Find the relative frequency f of the event (i) a 3 appears, (ii) a 5 appears, (iii) an
even number appears, (iv) a prime appears.

number of successes
total number of trials °

The relative frequency f =

() f=mg=-20 (i) f=qg=.15 (i) f=" 8= 51 (iv) f= LWL - 59

Prove Corollary 3.6: For any events A, B and C,
P(AUBUC) = P(A)+ P(B) + P(C) - P(ANB) — P(ANC) — P(BNC) + P(ANBNC)
Let D =BUC. Then ANnD = An(BuC) = (AnBYU(ANC) and
P(AND) = P(ANnB)+ P(ANnC) — PANBNANC) = PANB) + P(AnC) — PANBNC)
Thus
P(AUBUC) = P(AuD) = P(A) + P(D) — P(AnD)
= P(A) + P(B) + P(C) — P(BNC) — [P(ANB) + P(ANC) — P(ANBNC)]
= P(4) + P(B) + P(C) — P(BNnC) — P(AnB) — P(AnC) + PANEBNC)
Let § = {ai,as,...,a;} and T = {by, bs, ..., b} Dbe finite probability spaces.

Let the number »;; = P(a:) P(b;) be assigned to the ordered pair (a;, b;) in the product
set SXT = {(s,{):s€ S, t & T}. Show that the p; define a probability space on
S x T, i.e. that the p; are nonnegative and add up to one. (This is called the product
probability space. We emphasize that this is not the only probability function that
can be defined on the product set S X T.)
Since P(a;), P(b;) = 0, for each i and each j, p; = P(a;) P(b;) = 0. Furthermore,
PR STRLRE R ST IR I N - R SRl 7 N S

= Pla) P(b)) + -+ + Pla) P(b) + -+ + Plag) P(by) + -+ + Pla,) P(by)

= P(ap}[P(by) + -+ + P(b)] + -+ + P(a)[P(b)) + -+ + P(by)]

= Play))+*1 + -+ + Plag)-1

= P(ay) + -+ + P(ay)

=1
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Supplementary Problems

SAMPLE SPACES AND EVENTS

3.25. Let A and B be events. Find an expression and exhibit the Venn diagram for the event that
(i) A or not B occurs, (ii) neither 4 nor B occurs.

3.26. Let A, B and C be events, Find an expression and exhibit the Venn diagram for the event that
(i) exactly one of the three events occurs, (ii) at least two of the events occurs, (iii) none of
the events occurs, (iv) 4 or B, but not C, occurs.

3.27. Let a penny, a dime and a die be tossed.
(i) Describe a suitable sample space S.

(ii) Express explicitly the following events: A = {two heads and an even number appear}
B = {a 2 appears}, C = {exactly one head and a prime number appear}.

(iii) Express explicitly the event that (a) A and B occur, (b) only B occurs, (¢) B or C occurs.

b4

FINITE PROBABILITY SPACES

3.28. Which function defines a probability space on S = {a, as, a3}?
(i) Play) =1, Plag) =3, Pleg) =} (i) Play) =%, Play) =4, Plag) = 4
(i) Pay) = %, Plag) = —}, Plag) = % (iv) P(ay) =0, P(ag) = %, Pla;) = %

3.29. Let P be a probability function on S = {a;, ay, a3}. Find P(a,) if (i) P(ag) = 4 and P(ag) = 4,
(i) Pla) = 2Play) and Play = }, (i) P{azay) = 2P(a), (iv) Play) = 2Play) and
P(ay) = 3 FP(ay).

3.30. A coin is weighted so that heads is three times as likely to appear as tails. Find P(H) and P(T).

3.31. Three students 4, B and C are in a swimming race. A and B have the same probability of winning
and each is twice as likely to win as C. Find the probability that B or C wins.

3.32. A die is weighted so that the even numbers have the same chance of appearing, the odd numbers
have the same chance of appearing, and each even number is twice as likely to appear as any
odd number. Find the probability that (i) an even number appears, (ii) a prime number appears,
(iii) an odd number appears, (iv) an odd prime number appears.

3.33. Find the probability of an event if the odds that it will occur are (i) 2 to 1, (ii) 6 to 11.

3.34. In a swimming race, the odds that A will win are 2 to 3 and the odds that B will win are 1 to 4.
Find the probability p and the odds that A or B wins the race.

FINITE EQUIPROBABLE SPACES

3.35. A class contains 5 freshmen, 4 sophomores, 8 juniors and 3 seniors. A student is chosen at random
to represent the class. Find the probability that the student is (i) a sophomore, (ii) a senior,
(iii) a junior or senior.

3.36. One card is selected at random from 50 cards numbered 1 to 50. Find the probability that the
number on the card is (i) divisible by b, (ii) prime, (iii) ends in the digit 2.

3.37. Of 10 girls in a class, 3 have blue eyes. If two of the girls are chosen at random, what is the
probability that (i) both have blue eyes, (ii) neither has blue eyes, (iii) at least one has blue eyes?

3.38. Three bolts and three nuts are put in a box. If two parts are chosen at random, find the
probability that one is a bolt and one a nut.
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3.39.

3.40.

3.41.

3.42.

3.43.

INTRODUCTION TO PROBABILITY [CHAP. 3

Ten students, A, B, ..., are in a class. If a committee of 3 is chosen at random from the class,
find the probability that (i) A belongs to the committee, (ii) B belongs to the committee,
(iii) A and B belong to the committee, (iv) A or B belongs to the committee.

A class consists of 6 girls and 10 boys. If a committee of 3 is chosen at random from the class,
find the probability that (i) 8 boys are selected, (ii) exactly 2 boys are selected, (iii) at least one
boy is selected, (iv) exactly 2 girls are selected.

A pair of fair dice is tossed. Find the probability that the maximum of the two numbers is
greater than 4,

Of 120 students, 60 are studying French, 60 are studying Spanish, and 20 are studying French
and Spanish. If a student is chosen at random, find the probability that the student (i) is studying
French or Spanish, (ii) is studying neither French nor Spanish.

Three boys and 3 girls sit in a row. Find the probability that (i) the 3 girls sit together,
(ii) the boys and girls sit in alternate seats.

NONCOUNTABLE UNIFORM SPACES

3.44.

3.45.

3.46.

A point is selected at random inside an equilateral triangle whose side length is 3. Find the
probability that its distance to any corner is greater than 1.

A coin of diameter { is tossed randomly onto the Cartesian plane R2, Find the probability that the
coin does not intersect any line whose equation is of the form (a) x =%, (b)) z+y=%k, (¢) z=kFk
or ¥y =k. (Here k is an integer.)

A point X is selected at random from a line segment AB with midpoint O. Find the probability that
the line segments AX, XB and AO can form a triangle.

MISCELLANEOUS PROBLEMS

3.47.

3.48.

3.49.

3.50.

Let A and B be events with P(AUB) = §, P(AnB) = 4 and P(4c) = §. Find P(4), P(B) and
P{(A N Be).

Let A and B be events with P(A) = 4, P(AUB) = § and P(B¢) = §. Find P(AnB), P(AcnB¢),
P(AcuBc) and P(BnArc).

A die is tossed 50 times. The following table gives the six numbers and their frequency of
occurrence:

Number 1 2 3 4 5 6

Frequency 7 9 8 7 9 10

Find the relative frequency of the event (i) a 4 appears, (ii) an odd number appears, (iii) a prime
number appears.

Prove: For any events A, 4,, ..., 4,,
PAU"UA) = ZPA) ~ SPANA) + 3 PANANA) = o % PAn- 04,
i < <j<

(Remark: This result generalizes Theorem 3.5 and Corollary 3.6.)
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Answers to Supplementary Problems
3.25. (i) AUBe, (ii) (AUB)®

3.26. (i) (AnBenCyu(BnAcnC) U (CnACNBe) (iii) (AuBULC)
(i) ANB)LV(ANC)U(BNCQC) (iv) (AuB)NnCe

327. () S = {HH1, HH2, HH3, HH4, HH5, HH6, HT1, HT2, HT3, HT4, HT5, HTS,
TH1, TH2, TH3, TH4, TH5, TH6, TT1, TT2, TT3, TT4, TT5, TT6}

(i) A = (HH2, HH4, HH6}, B = {HH2, HT2, TH2, TT2}, C = {HT2, TH2, HT3, TH3, HT5, THS5)
(i) (@) AnB = (HH2}

(3) B\(AuC) = {TT2}

() BuC = {HH2, HT2, TH2, TT2, HT3, TH3, HT5, TH5}

3.28. (i) no, (ii) no, (iii) yes, (iv) yes
3.29. (i) %, (D)4, (i) 4 (iv) &
330, PH)=3% P(T)=1}

331 ¢

332, (i) 3, (i) &, (i) 4, (iv) %
333 (i) % (i) &

334. p =% the odds are 3 to 2.
33. ()3, ()3, Gi)g

336. (i) 4, (i) 3, (i) &

331, ()&, Gi) &, (i) 55

338. &

330. ()3, (), Gi)§ (v &
s40. (S DE, GDE vh

3.41.

<l

342, ()3, (i)}

343, () 1, (i) &

344, 1 —27/(9V3)

345, (D) 4, (01— V2, (i)}

346. 1

347. PA)=§, P(B)=3}, PAnB) =}

348. P(ANB) =}, P(AcnBe) =1, P(ACUB) =}, P(BnA9) =1

. s reey 26
349. (0%, (D%, @ik



Chapter 4

Conditional Probability
and Independence

CONDITIONAL PROBABILITY

Let E be an arbitrary event in a sample space S with P(E) > 0. The probability that
an event A occurs once E has occurred or, in other words, the conditional probability of
A given E, written P(A|E), is defined as follows:
P(ANE)

P(E)
As seen in the adjoining Venn diagram, P(A |E) in a
certain sense measures the relative probability of 4 S
with respect to the reduced space E.

In particular, if S is a finite equiprobable space and |A| denotes the number of elements
in an event A, then

PMnEy:B%¥ﬂ,
That is,
Theorem 4.1: Let S be a finite equiprobable space with events A and E. Then

P(A|E) =

P(ANE) _|ANE]
P(E) — |E]|

PE) = % andso P(A|E) =

PA|E) = number of elements in ANE

number of elements in F

or
number of ways A and E can occur

number of ways E can occur

PA|E) =

Example 41: Let a pair of fair dice be tossed. If the sum is 6, find the probability that one of
the dice is a 2, In other words, if

E = {sumis 6} = {(1,5), (2,4), (3,8), (4,2), (,1)}
and A = {a 2 appears on at least one die}
find P(4 | E).
Now E consists of five elements and two of them, (2,4) and (4, 2), belong to A:
ANE = {(2,4), (4,2)}. Then P(A|E) =2,
On the other hand, since A consists of eleven elements,
A = {(2,1),(2,2), (23),(24), (2,5), (26), (1,2), (3,2), (4,2), (5,2), (6,2)}

and S consists of 36 elements, P(A) = %.

Example 4.2: A couple has two children. Find the probability p that both children are boys if (i) we are
given that the younger child is a boy, (ii) we are given that (at least) one of the children
is a boy.

The sample space for the sex of two children is S = {bb, bg, gb,gg} with
probability 4 for each point. (Here the sequence of each point corresponds to the
sequence of births.)

(i} The reduced sample space consists of two elements, {bb, gb}; hence p = }.
(ii) The reduced sample space consists of three elements, {bb, bg, gb}; hence p = §.

b4
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MULTIPLICATION THEOREM FOR CONDITIONAL PROBABILITY

If we cross multiply the above equation defining conditional probability and use the
fact that ANE = ENA, we obtain the following useful formula.

Theorem 4.2: P(ENA) = P(E)P(A|E)
This theorem can be extended by induction as follows:

Corollary 4.3: For any events 4,, 4., ..., 4.,
P(AiNA4:N---NA,)
= P(A:) P(A2| A1) P(A3| A1NAy) - - - P(A. | A1NA2N - - - NAq)

We now apply the above theorem which is called, appropriately, the multiplication
theorem.
Example 43: A lot contains 12 items of which 4 are defective. Three items are drawn at ran-

dom from the lot one after the other. Find the probability p that all three are

nondefective.

The probability that the first item is nondefective is % since 8 of 12 items are
nondefective. If the first item is nondefective, then the probability that the next
item is nondefective is % since only 7 of the remaining 11 items are nondefective.
If the first two items are nondefective, then the probability that the last item is
nondefective is 1—86 since only 6 of the remaining 10 items are now nondefective.
Thus by the multiplication theorem,

_ B _ T 6 _ 14

P=132"11"10 ~ 55

FINITE STOCHASTIC PROCESSES AND TREE DIAGRAMS

A (finite) sequence of experiments in which each experiment has a finite number of
outcomes with given probabilities is called a (finite) stochastic process. A convenient
way of describing such a process and computing the probability of any event is by a tree
diagram as illustrated below; the multiplication theorem of the previous section is used to
compute the probability that the result represented by any given path of the tree does occur.

Example 44: We are given three boxes as follows:
Box I has 10 light bulbs of which 4 are defective.
Box II has 6 light bulbs of which 1 is defective.
Box III has 8 light bulbs of which 3 are defective.

We select a box at random and then draw a bulb at random. What is the proba-
bility p that the bulb is defective?

Here we perform a sequence of two experiments:
(i) select one of the three boxes;
(ii) select a bulb which is either defective (D) or nondefective (N).

The following tree diagram describes this process and gives the probability of each
branch of the tree:

2 D
I<
} ! Y
3 II<D
N
4 &
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The probability that any particular path of the tree occurs is, by the multiplica-
tion theorem, the product of the probabilities of each branch of the path, e.g.,
2 _ 2

the probability of selecting box I and then a defective bulb is %-3 = e

Now since there are three mutually exclusive paths which lead to a defective
bulh, the sum of the probabilities of these paths is the required probability:
_1.2,1.1.1.3 _ us
3 5 3 6 3 8 360
Example 45: A coin, weighted so that P(H) =% and P(T) =}, is tossed. If heads appears,
then a number is selected at random from the numbers 1 through 9; if tails ap-
pears, then a number is selected at random from the numbers 1 through 5. Find
the probability p that an even number is selected.

The tree diagram with respective probabilities is

Note that the probability of selecting an even number from the numbers 1
through 9 is 4 since there are 4 even numbers out of the @ numbers, whereas the
probability of selecting an even number from the numbers 1 through § is % since
there are 2 even numbers out of the 5 numbers. Two of the paths lead to an
even number: HE and TE. Thus

p = P(E) =

wlbo
|

1 2 _ 58
t3'5 =

PARTITIONS AND BAYES’ THEOREM

Suppose the events A4,, As, ..., A, form a partition
of a sample space S; that is, the events A; are mutually
exclusive and their union is S. Now let B be any other
event. Then

B = SﬂB = (A1UA2U . UA,.)OB
= (AiNB)U (A:NB)U---U(A.NB)
where the A;:NB are also mutually exclusive. Ac- B is shaded.
cordingly,

P(B) = P(A,NB) + P(4:NB) + -+ + P(A.NB)
Thus by the multiplication theorem,

P(B) = P(A))P(B|Ay) + P(A:) P(B|A2) + -+ + P(A:)P(B|Ay) (1)
On the other hand, for any ¢, the conditional probability of A: given B is defined by
_ P(AinB)
PAi|B) = “pp

In this equation we use (1) to replace P(B) and use P(A:NB) = P(A;)P(B|A:) to replace
P(AinB), thus obtaining

Bayes’ Theorem 4.4: Suppose A,, 4., ..., A, is a partition of S and B is any event. Then
for any 1,
P(A;) P(B| Ay

P(Ai| B) P(A)P(B]A)) + P(A,)P(B[4s) + --- + P(A.) P(B[A4q)
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Example 4.6: Three machines 4, B and C produce respectively 50%, 30% and 20% of the total
number of items of a factory. The percentages of defective output of these ma-
chines are 3%, 4% and 5%. If an item is selected at random, find the probability
that the item is defective.

Let X be the event that an item is defective.

Then by (1) above, .03
A
P(X) = PAYP(X|A) + P(B)P(X|B) 0 <
+ P(C)P(X|C) o
(.50)(.03) + (.30)(.04) + (.20)(.05) .30 B<
.20

2 U

037
Observe that we can also consider this problem as 05
a stochastic process having the adjoining tree C<
diagram.

Example 4.7: Consider the factory in the preceding example. Suppose an item is selected at
random and is found to be defective. Find the probability that the item was pro-
duced by machine A; that is, find P(4 ] X).

By Bayes’ theorem,

U 2 U

Z

_ P{A) P(X | A)
PAalx) = PA)P(X[A) + PB)P(X[B) + PCO)PX|0)
(.50)(.03) _ 15
(.50)(.03) + (.30)(.04) + (.20)(.06) 37

In other words, we divide the probability of the required path by the probability
of the reduced sample space, i.e. those paths which lead to a defective item.

INDEPENDENCE

An event B is said to be independent of an event A if the probability that B occurs is
not influenced by whether A has or has not occurred. In other words, if the probability
of B equals the conditional probility of B given A: P(B)= P(B|A). Now substituting
P(B) for P(B|A) in the multiplications theorem P(ANB) = P(A) P(B|A), we obtain

P(ANnB) = P(A)P(B)
We use the above equation as our formal definition of independence.

Definition: Events A and B are independent if P(ANB) = P(A)P(B); otherwise they
are dependent.

Example 48: Let a fair coin be tossed three times; we obtain the equiprobable space
S = {HHH, HHT, HTH, HTT, THH, THT, TTH, TTT)}
Consider the events
A = {first toss is heads}, B = {second toss is heads}

C = {exactly two heads are tossed in a row}

Clearly A and B are independent events; this fact is verified below. On the other
hand, the relationship between 4 and C or B and C is not obvious. We claim
that A and C are independent, but that B and C are dependent. We have

P(4) = P(HHH, HHT, HTH, HTT)) = 4 = 3
P(B) = P({HHH, HHT, THH, THT)) = § = :
P(C) = P({HHT, THH}) = % = %
Then
P(AnB) = P(HHH,HHT)) = ;, P@4n0) = PUHAT) = ,

P(BNC) = P({(HHT, THH)) = 3
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Accordingly,
PA)P(B) = % . -;— = % = P(ANnB), andso A and B are independent;
PA)P(C) = é -% = % = P(ANnC), andso A and C are independent,;
PBYP(C) = % ‘lz = % # P(BNC), andso B and C are dependent.

Frequently, we will postulate that two events are independent, or it will be clear from
the nature of the experiment that two events are independent.

Example 49:

The probability that A hits a target is 1 and the probability that B hits it is 2.
What is the probability that the target will be hit if A and B each shoot at the

target?
We are given that P(4) = 1 and P(B) = £, and we seek P(AUB). Further-
more, the probability that A or B hits the target is not influenced by what the

other does; that is, the event that A hits the target is independent of the event
that B hits the target: P(ANB) = P(A) P(B). Thus

P(AUB) = P(4) + P(B) — P(AnB) = P(A) + P(B) — P(4)P(B)
1,2 1.2 _ 1
475 2'5 T 20

Three events A, B and C are independent if:

(iy P(ANnB) = P(A)P(B), P(ANC) = P(A)P(C) and P(BNC) = P(B)P(C)
i.e, if the events are pairwise independent, and

(iiy P(ANBNC) = P(A)P(B) P(C).

The next example shows that condition (ii) does not follow from condition (i); in other
words, three events may be pairwise independent but not independent themselves.

Example 4.10:

Let a pair of fair coins be tossed; here S = {HH, HT, TH, TT} is an equiprobable
space. Consider the events

A = {heads on the first coin} = {HH, HT}.

B = {heads on the second coin} = {HH, TH}

C = {heads on exactly one coin} = {HT, TH}

Then P(A) = P(B) =P(C) =%=} and

!

1

P(ANB) = P{HEY =1, PU4no) = PeET) =1, PBNO) = (TI) =1

Thus condition (i) is satisfied, i.e., the events are pairwise independent. However,
ANBNC =@ and so
P(ANBNC) = P(®) = 0 # P(A) P(B) P(C)

In other words, condition (ii) is not satisfied and so the three events are not inde-
pendent.

INDEPENDENT OR REPEATED TRIALS

We have previously discussed probability spaces which were associated with an experi-
ment repeated a finite number of times, as the tossing of a coin three times. This concept
of repetition is formalized as follows:

Definition: Let S be a finite probability space. By n independent or repeated trials, we
mean the probability space T consisting of ordered n-tuples of elements of S
with the probability of an n-tuple defined to be the product of the probabilities
of its components:

P((Sl, 82, ..., Sn)) = P(Sl) P(Sz) A ‘P(Sn)
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Example 4.11: Whenever three horses a, b and ¢ race together, their respective probabilities of
winning are 4, 4 and }. In other words, S = {¢,b,c¢} with P(a) = 3, P) =1
and P(¢) = L. If the horses race twice, then the sample space of the 2 repeated
trials is

T = {aa, ab, ac, ba, bb, be, ca, ¢b, cc}
For notational convenience, we have written ac for the ordered pair (@,¢). The
probability of each point in T is

_ _1,1_1 _1 _ 1
P(aa) = Pla)Pla) = 5+5 = 3 P(ba) = ¢ Plea) = {5
_ - 1,1 _1 -1 = 1
P(ab) = P@)P(b) = 5+3 = § Pb) = g P(eb) = 1o
_ 1 1 1 1 1
P = P P = Ze= = . = — = -
(ac) (a) Pfe) 5% i2 P(bc) 18 P(ece) 3
Thus the probability of ¢ winning the first race and ¢ winning the second race is

P(ca) = ;4.

From another point of view, a repeated
trials process is a stochastic process whose /a
tree diagram has the following properties: 3 b

a
(i) every branch point has the same outcomes; %\
1 ¢

(ii) the probability is the same for each

branch leading to the same outcome. For a
example, the tree diagram of the repeated i 4/’}/?/
trials process of the preceding experiment b b
is as shown in the adjoining figure. %\ c
Observe that every branch point has the 3 3 e
outcomes @, b and ¢, and each branch lead- ////%/
ing to outcome a has probability 4, each e b
branch leading to b has probability %, and %\c

each leading to ¢ has probability 3.

Solved Problems

CONDITIONAL PROBABILITY IN FINITE EQUIPROBABLE SPACES

4.1. A pair of fair dice is thrown. Find the probability p that the sum is 10 or greater if
(i) 2 5 appears on the first die, (ii) a 5 appears on at least one of the dice.

(i) If a b appears on the first die, then the reduced sample space is
A = {(5,1), (5,2), (5,3), (5,4), (5,5), (5,6)}
The sum is 10 or greater on two of the six outcomes: (5,5), (5,6). Hence p = % = %
(i) If a 5 appears on at least one of the dice, then the reduced sample space has eleven elements:
B = {(5,1), (5,2), (5,3), (5,4), (5,5), (5,6), (1,5), (2,5), (3,5), (4,6), (6,5)}

The sum is 10 or greater on three of the eleven outcomes: (5,5), (5,6), (6,5). Hence p = 111
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4.2,

43.

44.

4.5.

4.6.

CONDITIONAL PROBABILITY AND INDEPENDENCE [CHAP. 4

Three fair coins are tossed. Find the probability p that they are all heads if (i) the
first coin is heads, (ii) one of the coins is heads.

The sample space has eight elements: S = {HHH,HHT,HTH,HTT, THH, THT, TTH, TTT}.

(1) If the first coin is heads, the reduced sample space is 4 = {HHH,HHT, HTH, HTT}. Since
the coins are all heads in 1 of 4 cases, p = 1.

(ii) If one of the coins is heads, the reduced sample space is B = {HHH,HHT,HTH, HTT, THH,
THT, TTH}. Since the coins are all heads in 1 of 7 cases, p = i

A pair of fair dice is thrown. If the two numbers appearing are different, find the
probability p that (i) the sum is six, (ii) an ace appears, (iii) the sum is 4 or less.
Of the 36 ways the pair of dice can be thrown, 6 will contain the same numbers: (1,1), (2,2),
., (6,6). Thus the reduced sample space will consist of 36 —6 = 30 elements.
(i) The sum 6 can appear in 4 ways: (1,5), (2, 4), (4,2), (6,1). (We cannot include (38,3) since
the numbers are the same.) Hence p =4 = 15.
(ii) An age can appear in 10 ways: (1,2), (1,3), ..., (1,6) and (2,1), (3,1), ..., (6,1). Hence
1 1
p= 0 = 3

(iii) The sum of 4 or less can ocecur in 4 ways: (3,1), (1,3), (2,1), (1,2). Thus p = 310 = 1—25

Two digits are selected at random from the digits 1 through 9. If the sum is even,
find the probability » that both numbers are odd.

The sum is even if both numbers are even or if both numbers are odd. There are 4 even
numbers (2, 4, 6, 8); hence there are (;) = 6 ways to choose two even numbers. There are 5 odd
numbers (1, 3,5,7,9); hence there are (:) = 10 ways to choose two odd numbers. Thus there are
6 + 10 = 16 ways to choose two numbers such that their sum is even; since 10 of these ways occur

when both numbers are odd, p = 10 = %.

A man is dealt 4 spade cards from an ordinary deck of 52 cards. If he is given
three more cards, find the probability p that at least one of the additional cards is
also a spade.

Since he is dealt 4 spades, there are 52 — 4 = 48 cards remaining of which 13 — 4 = 9 are
spades. There are (4: ) = 17,296 ways in which he can be dealt three more cards. Since there are
48 — 9 = 39 cards which are not spades, there are (39) = 9139 ways he can be dealt three cards
which are not spades. Thus the probability ¢ that he is not dealt another spade is ¢ = 1?, 596 5

— __ 8157
hence p =1—¢ = 755.

Four people, called North, South, East and West, are each dealt 18 cards from an
ordinary deck of 52 cards.

(i) If South has no aces, find the probability p that his partner North has exactly
two aces.

(ii) If North and South together have nine hearts, find the probability » that East
and West each has two hearts.

i) There are 39 cards, including 4 aces, divided among North, East and West. There are
( ) ways that North can be dealt 13 of the 39 cards. There are (2) ways he can be dealt 2 of
the four aces, and ( ) ways he can be dealt 11 cards from the 39 —4 = 35 cards which are
not aces. Thus

(2)(,1) _ 6:1213+25+26 _ 650

(39) T 36-37-38-39 2109
13
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(ii) There are 26 cards, including 4 hearts, divided among East and West. There are (fg) ways
that, say, East can be dealt 13 cards. (We need only analyze East’s 13 cards since West must
have the remaining cards.) There are ( ) ways East can be dealt 2 hearts from 4 hearts,
and (11) ways he can be dealt 11 non-hearts from the 26 —4 = 22 non-hearts. Thus

22
(2)(,1) _ 6°12°1312+13 234

) ~ 23-24-25°26 575

MULTIPLICATION THEOREM

4.7.

48.

4.9.

4.10.

A class has 12 boys and 4 girls. If three students are selected at random from the
class, what is the probability » that they are all boys?

The probability that the first student selected is a boy is 12/16 since there are 12 boys out of
16 students. If the first student is a boy, then the probability that the second is a boy is 11/15
since there are 11 boys left out of 15 students. Finally, if the first two students selected were boys,
then the probability that the third student is a boy is 10/14 since there are 10 boys left out of
14 students. Thus, by the multiplication theorem, the probability that all three are boys is

2110 _u
~ 16 15 14 — 28

Another Method. There are (16) 560 ways to select 3 students of the 16 students, and

( ) = 220 ways to select 3 boys out of 12 boys; hence p = @ = ;s

A Third Method. If the students are selected one after the other, then there are 16+ 15 14 ways
to select three students, and 12«11+ 10 ways to select three boys; hence p = i—e'—lg—:; = g.

A man is dealt 5 cards one after the other from an ordinary deck of 52 cards. What
is the probability p that they are all spades?

The probability that the first card is a spade is 13/52, the second is a spade is 12/51, the third

is a spade is 11/50, the fourth is a spade is 10/49, and the last is a spade is 9/48. (We assumed in

13 12,1110 9 33
each case that the previous cards were spades.) Thus p = 555755 ° %% = sadw-

An urn contains 7 red marbles and 3 white marbles. Three marbles are drawn from
the urn one after the other. Find the probability » that the first two are red and
the third is white.

The probability that the first marble is red is 7/10 since there are 7 red marbles out of 10
marbles. If the first marble is red, then the probability that the second marble is red is 6/9 since
there are 6 red marbles remaining out of the 9 marbles. If the first two marbles are red, then
the probability that the third marble is white is 3/8 since there are 3 white marbles out of the
8 marbles in the urn. Hence by the multiplication theorem,

7.6.3 _ 1

T 10°9°8 T 10

The students in a class are selected at random, one after the other, for an examina-
tion. Find the probability p that the boys and girls in the class alternate if (i) the
class consists of 4 boys and 3 girls, (ii) the class consists of 3 boys and 3 girls.

(i) If the boys and girls are to alternate, then the first student examined must be a boy. The
probability that the first is a boy is 4/7. If the first is a boy, then the probability that the
second is a girl is 3/6 since there are 3 girls out of 6 students left. Continuing in this manner,
we obtain the probability that the third is a boy is 3/5, the fourth is a girl is 2/4, the fifth is a
boy is 2/3, the sixth is a girl is 1/2, and the last is a boy is 1/1. Thus

4,332 211 1

P=7°6"5"4"3’2"17 3
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(ii) There are two mutually exclusive cases: the first pupil is a boy, and the first is a girl. If the
first student is a boy, then by the multiplication theorem the probability p, that the students

alternate is
~ 33 2 211 1

PLT 55717321 T 0
If the first student is a girl, then by the multiplication theorem the probability p, that
the students alternate is

Thus p = p,+py = 1—+% = 5

MISCELLANEOUS PROBLEMS ON CONDITIONAL PROBABILITY

4.11.

4.12,

4.13.

In a cerfain college, 25% of the students failed mathematics, 15% of the students
failed chemistry, and 10% of the students failed both mathematics and chemistry.
A student is selected at random.

(i) If he failed chemistry, what is the probability that he failed mathematics?

(ii) If he failed mathematics, what is the probability that he failed chemistry?

(iii) What is the probability that he failed mathematics or chemistry?

Let M = {students who failed mathematics} and C = {students who failed chemistry}; then
PM) = .25, P(C) = .15, PMnC) = .10
(i) The probability that a student failed mathematics, given that he has failed chemistry is
P(MnC) 10 2
p|c) = 20O _ 10

P(C) — 15 3

(i) The probability that a student failed chemistry, given that he has failed mathematics is

_P(CNnM) _ 10 _ 2
P(CIM) = Py ~— 2 5

(i) P(MUC) = P(M) + P(C) — P(MNC) = 26+ .15~ .10 = .30 =

Let A and B be events with P(4) =4, P(B)=1% and P(ANB)=4. Find (i) P(4|B),
(ii) P(B| A), (iii) P(AUB), (iv) P(A¢|B), (v) P(B*|A9).

P(ANB
(i) P@A|B) =—%= %:g (i) P(B|A) =Pf(2)‘“ =§=%
@ii) P(AUB) = P(A) + P(B) — P(ANB) = %+§_4l = L

(iv) First compute P(B¢) and P(A¢nB¢). P(BY) = 1—P(B) = 1~} = % By De Morgan’s
law, (AUB)c = AcnBc; hence P(AcNBc) = P((AUB)) =1~ PAUB) =1— 115 = 155

Thus P(Ac¢|Be) = P_(;(”T“C)@ = % = %-

P(BNA°) _ 1%

(v} PA9)=1-P@)=1-}=4 Then P(B°|A9) = —pro— =7

Let A and B be events with P(A)=4, P(B)=% and P(AUB)=4%. Find P(4|B)
and P(B|A).

First compute P(4A N B) using the formula P(4 uB) = P(A) + P(B) — P(ANB):

3= 3+i-PanB) or PANB) =1
_PAnBY _ 1 =2 _PBnA)y_% _ 2
Then P(A]B)_—P(_BT——-%_E and P(B|A4) = PA) —--g—_—g.
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4.14. Find P(B|A) if (i) A is a subset of B, (ii) A and B are mutually exclusive.

(i) If A is a subset of B, then whenever A occurs B must occur; hence P(B|A) = 1. Alternately,
if A is a subset of B then ANB = A; hence

PANnB)y _ PA) _
P(A) — P@A)

O) O,

(@) (i1)

P(B|A) =

1

(ii) If A and B are mutually exclusive, i.e. digjoint, then whenever A occurs B cannot occur; hence
P(B|A) = 0. Alternately, if A and B are mutually exclusive then ANB = @; hence

PAnB) _ P@) _ 0O

PB|A) = “pay = Pa) — PlA) —

0

4.15. Three machines A, B and C produce respectively 60%, 30% and 10% of the total
number of items of a factory. The percentages of defective output of these machines
are respectively 2%, 3% and 4%. An item is selected at random and is found defective.
Find the probability that the item was produced by machine C.

Let X = {defective items}. We seek P(C | X), the probability that an item is produced by machine
C given that the item is defective. By Bayes’ theorem,

_ P(C) P(X | C)
P(CIX) = pAYPXT4A) ¥ P(B)PX B) * PO PX]|C)
(10)(.04) 4

{:60)(.02) + (.30)(.03) + (.10)(.04) 25

4.16. In a certain college, 4% of the men and 1% of the women are taller than 6 feet.
Furthermore, 60% of the students are women. Now if a student is selected at
random and is taller than 6 feet, what is the probability that the student is a woman?

Let A = {students taller than 6 feet}. We seek P(W | A), the probability that a student is a
woman given that the student is taller than 6 feet. By Bayes’ theorem,
P(W)P(A|W) _ (.60)(.01) - 3

P(W)PA|W) + PIM)P(A|M) — (.60)(.01) + (.40)(.04) 11

P(W|A) =

4.17. Let E be an event for which P(E) > 0. Show that the conditional probability function
P(* | E) satisfies the axioms of a probability space; that is,

[P} For any event A, 0 =P(A|E)=1.

[P;] For the certain event S, P(S|E) =1.

[Ps] If A and B are mutually exclusive, then P(AUB|E) = P(A|E) + P(B|E).
[P If A, Ag, ... is a sequence of mutually exclusive events, then

P(A1UAsU - -- |E) = P(A,|E) + P(42|E) + - --

P(ANE)

PE) 1 and is also non-

(i) We have ANE CE; hence P(ANE) = P(E). Thus P(A|E) =
negative. Thatis, 0 = P(A|E) =1 and so [P,] holds.
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P(SNE) _ P(E) _
P(E) ~ P(E) ™

(i) We have SNE = E; hence P(S|E) = 1. Thus [P,] holds.

(ii) If A and B are mutually exclusive events, then so are ANE and BNE. Furthermore,
(AUB)NE = (ANE)U(BNE). Thus

P((AuB)NnE) = P(ANE)u(BNE)) = P(ANE)+ P(BNnE)
and therefore

P
P(AUB|E) = P((A;(g))nE) _ (AnEiD&'f’(BnE)
P(ANE) , P(BNE) _
pEy T PE) - FP@AIE) + PBE)

Hence [P;] holds.

(iv) Similarly if A,,A,, ... are mutually exclusive, then so are A,NE, A,nE,.... Thus
P(A(UA,U---)NE) = P((A,NE) U(4,nE)U ---) = PA,NE)+ P(A,nE) + - -
and therefore

P((A,UA,U--)NE) P(A,NE) + P(A,nE) + ---
PUuaw- | B) = = = —rm
P(AlnE) P(Aan) _ N
P(E) + PE) T T P(A,|E) + P(A,|E) +

That is, {P;] holds.

FINITE STOCHASTIC PROCESSES

4.18. A box contains three coins; one coin is fair, one coin is two-headed, and one coin is
weighted so that the probability of heads appearing is 4. A coin is selected at
random and tossed. Find the probability p that heads appears.

Construet the tree diagram as shown in Figure (a) below. Note that I refers to the fair coin,

II to the two-headed coin, and III to the weighted coin. Now heads appears along three of the
paths; hence

p = %é+%1+%!§ _ i_é

t R

4 _H " :
‘&% I%<T 3 §W
—1 H ¥ 5 %R
% III§<H ) ?W
R

T
§ qu
(a) ®)

4.19. We are given three urns as follows:
Urn A contains 3 red and 5 white marbles.
Urn B contains 2 red and 1 white marble.
Urn C contains 2 red and 3 white marbles.

An urn is selected at random and a marble is drawn from the urn. If the marble
is red, what is the probability that it came from urn A?
Construct the tree diagram as shown in Figure (b) above.

We seck the probability that A was selected, given that the marble is red; that is, P(4 | R).
In order to find P(A | R), it is necessary first to compute P(ANR) and P(R).

The probability that urn A is selected and a red marble drawn is %'% = %; that is,
P(ANR) = %. Since there are three paths leading to a red marble, P(R) =§-§+%'§+§--§= ;—;’%.
Thus
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4.20.

4.21.

4.22.

P(ANR) _ % _ 45

PAIR) = PRy ~— 1B T 173
360
Alternately, by Bayes’ theorem,
PA)P(R|A)
PA|R) PAPER|A) + PBPRIE) + POPE[O)
3 _ 45

SRR EE R L

Box A contains nine cards numbered 1 through 9, and box B contains five cards
numbered 1 through 5. A box is chosen at random and a card drawn. If the number
is even, find the probability that the card came from box A.

The tree diagram of the process is shown in Figure (a) below,

We seek P(A4 | E), the probability that A was selected, given that the number is even. The
probability that box A and an even number is drawn is %'%=%; that is, P(ANE) =§. Since
there are two paths which lead to an even number, P(E) =%~%+é . f = ;—5. Thus

2
PANE) _ 3
P(E) T

-
(=3

P4 |E) =

[ury

An urn contains 3 red marbles and 7 white marbles. A marble is drawn from the
urn and a marble of the other color is then put into the urn. A second marble is
drawn from the urn.

(i) Find the probability p that the second marble is red.

(ii) If both marbles were of the same color, what is the probability p that they were
both white?

Construct the tree diagram as shown in Figure (b) above.

(i) Two paths of the tree lead to a red marble: p = %- %4— 110'14‘0 = ;—z.
8

(i) The probability that both marbles were white is 15° 5 =2. The probability that both

marbles were of the same color, i.e. the probability of the reduced sample space, is

SeEy 1—70 2= % . Hence the conditional probability p = -:—(1,/ i% =1

We are given two urns as follows:

Urn A containg 3 red and 2 white marbles.
Urn B contains 2 red and 5 white marbles,

An urn is selected at random; a marble is drawn and put into the other urn; then
a marble is drawn from the second urn. Find the probability » that both marbles
drawn are of the same color.

Construct the following tree diagram:
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Note that if urn A is selected and a red marble drawn and put into urn B, then urn B has
3 red marbles and 5 white marbles.

Since there are four paths which lead to two marbles of the same color,
3 1 2 2 1 5 1 901

2 — £
574 7 2°7°3 2772 T 1ew0

DO =

INDEPENDENCE

4.23. Let A = event that a family has children of both sexes, and let B = event that a
family has at most one boy. (i) Show that A and B are independent events if a
family has three children. (ii) Show that A and B are dependent events if a family
has two children.

(i) We have the equiprobable space S = {bbb, bbg, bgb, bgg, gbb, gbg, ggb, ggg}. Here

A = {bbg, bgb, bgg, gbb, gbg, ggb}  and so P(A) = g = %

4 1

B = {bgyg, 9by, 99b, 999} and so PB) = g =3
ANB = {bgg, gbg, ggb} andso P(ANB) = %

Since P(A)P(B) = 2-% = % = P(AnB), A and B are independent.

(ii) We have the equiprobable space S = {bbd, by, gb, gg}. Here

A = {bg, gb} and so PA) = %
B = {bg, gb,gg} andso PB) = %
ANB = {bg, gb} andso P(ANB) = %

Since P(A)P(B) # P(AnB), A and B are dependent.

4.24. Prove: If A and B are independent events, then Ac and B° are independent events.
P(AcnBr) = P(AuB)?) = 1 —P(AUuB) = 1~ P(A) — P(B) + P(AnB)
= 1— P(A) — P(B) + P(A) P(B) = [1 — P(A)][1 — P(B)] = P(A)P(B°)

4.25. The probability that a man will live 10 more years is }, and the probability that his
wife will live 10 more years is 4. Find the probability that (i) both will be alive in
10 years, (ii) at least one will be alive in 10 years, (iii) neither will be alive in
10 years, (iv) only the wife will be alive in 10 years.
Let A = event that the man is alive in 10 years, and B = event that his wife is alive in
10 years; then P(A) =41 and P(B) = }.
(i) We seek P(ANB). Since A and B are independent, P(ANB) = P(A)P(B)=1-} =&

12°
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4.26.

4.27.

(i) We seek P(AUB). P(AUB) = P(A) + P(B)— P(ANB) = } +} — % = &

(ili) We seek P(AcnBc). Now P(A¢)=1—-PA)=1—}=31 and P(B)=1—-PB)=1-}=3%.
Furthermore, since A¢ and B¢ are independent, P(AcnBc) = P(A9)P(Bc) = §-% = L.
Alternately, since (AUB)c = AcnB¢, P(AcnBc) = P((AUB)) =1— P(AUB)=1-1=1.

(iv) We seek P(A°nB). Since P(4c) =1—P(A) =% and Ac and B are independent (see Problem
4.56), P(A¢NB) = P(A°) P(B) = {.

Box A contains 8 items of which 3 are defective, and box B contains 5 items of which
2 are defective. An item is drawn at random from each box.

(i) What is the probability p that both items are nondefective?
(ii) What is the probability p that one item is defective and one not?

(iii) If one item is defective and one is not, what is the probability p that the defec-
tive item came from box A?

(i) The probability of choosing a nondefectlve item from A is 5 and from B is % Since the
events are independent, p = 5-% —_—-8-,

(ii) Method 1. The probability of choosing two defective items is g_%:m_ From (i) the

probability that both are nondefective is a. Hence p =1 —§— 23—0 = :—.

Method 2. The probablhty p; of choosing a defective item from A and a nondefective item

from B is §+3 = 40 The probability p, of choosing a nondefective item from A and a

defective item from B is %% = 7:. Hence p=p,+p; = 490 +i= ;g

(iii) Consider the events X = {defective item from A} and Y = {one item is defective and one

nondefective}. We seek P(X|Y). By (ii), P(XnY)=p, = 40 and P(Y) = ;g. Hence

9

P(XnY 20 9

p = P(X|Y) = __(P(’;,)) =8==
4

1t

The probabilities that three men hit a target are respectively 4, 1 and 4. Each
shoots once at the target. (i) Find the probability p that exactly one of them hits
the target. (ii) If only one hit the target, what is the probability that it was the
first man?

Consider the events A = {first man hits the target}, B = {second man hits the target}, and

= {third man hits the target}; then P(4) = %, P(B) = 1 and P(C) = 4. The three events are
independent, and P(Ac) = §, P(Bc) =2, P(C) = }.

(i) Let E = {exactly one man hits the target}. Then
= (ANBcNC) U (AcNBNC) U (AcnBenC)

In other words, if only one hit the target, then it was either only the first man, ANBenCs,
or only the second man, AcNBNC¢, or only the third man, AcnBecNC. Since the three events
are mutually exclusive, we obtain (using Problem 4.62)

p = PE) = PAnBNCY) + P(AcnBNC¢) + P(AcnB<nC)
= P(A)P(BY) P(C?) + P(A) P(B) P(C7) + P(A?) P(B<) P(C)
-~ 132 512,531 _ 1 5 _ 5 _ 31
= §'4°376'1°3%76'1'3 T 127372 T w2

(ii) We seek P(A | E), the probability that the first man hit the target given that only one man
hit the target. Now ANE = AﬁBCr'\Cc is the event that only the first man hit the target.

By (i), P(ANE) = P(ANBenCe) = L and P(E) = 3}; hence
1
_PANE) iz _ 6
PAIE) = =gy = st = 31
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INDEPENDENT TRIALS

4.28.

4.30.

A certain type of missile hits its target with probability .3. How many missiles
should be fired so that there is at least an 80% probability of hitting a target?

The probability of a missile missing its target is .7; hence the probability that » missiles miss a
target is (.7)*. Thus we seek the smallest n for which

1— (7" > .8 orequivalently (. 7)» < .2

Compute: () = .7, (\7)2 = .49, (.7)3 =.343, (.74 =.2401, (./7)5 =.16807. Thus at least 5 missiles
should be fired.

A certain soccer team wins (W) with probability .6, loses (L) with probability .3
and ties (T) with probability .1. The team plays three games over the weekend.
(i) Determine the elements of the event A that the team wins at least twice and doesn’t
lose; and find P(A). (ii) Determine the elements of the event B that the team wins,
loses and ties; and find P(B).

(i) A consists of all ordered triples with at least 2 W’s and no L’s. Thus
A = (WWW,WWT, WIW, TWW}
Furthermore, P(A) = PWWW) + P(WWT) + P(WTW) + P(TWW)
(.6)(.6)(.6) + (.6)(.6)(.1) + (.6)(.1)(.6) + (.1)(.6)(.6)
= .216 + .036 + .036 + .036 = .324

I

(ii) Here B = {WLT, WTL, LWT, LTW, TWL, TLW}. Since each element of B has probability
(.6)(:3)(.1) = .018, P(B) = 6(.018) = .108.

Let S be a finite probability space and let T be the probability space of »n independent
trials in S. Show that T is well defined; that is, show (i) the probability of each
element of 7 is nonnegative and (ii) the sum of their probabilities is 1.
If S={ay...,a), then T can be represented by
T = {a,-‘---ain e in=1, 000,17

Since P(a;) = 0, we have
P(a; - -a;) = Plag)-Play) = 0

for a typical element a e in T, which proves (i)

We prove (i) by induction on n. It is obviously true for » = 1. Therefore we consider n>1
and assume (ii) has been proved for » — 1. Then

r T r r
{1, B .,Ein -1 P(all a‘n) il, N -.Ein -1 P(a"ll) P(ai") "1: B -:izn_ = " (a‘l) (a"n-—l) iﬂ§ " (a‘n)
r T
= il,”',§~l=l P(ail)...P(a{n_l) = {l,.u,g_l:] P(ail.“a"n——l) = 1

by the inductive hypothesis, which proves (ii) for =.
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Supplementary Problems

CONDITIONAL PROBABILITY

4.31.

4.32.

4.33.

4.34.

4.35.

4.36.

437,

4.38.

4.39.

4.40.

4.41.

4.42.

4.43.

A die is tossed. If the number is odd, what is the probability that it is prime?

Three fair coins are tossed. If both heads and tails appear, determine the probability that exactly
one head appears.

A pair of dice is tossed. If the numbers appearing are different, find the probability that the sum
is even.

A man is dealt 5 red cards from an ordinary deck of 52 cards. What is the probability that they
are all of the same suit, i.e. hearts or diamonds?

A man is dealt 3 spade cards from an ordinary deck of 52 cards. If he is given four more cards,
determine the probability that at least two of the additional cards are also spades.

Two different digits are selected at random from the digits 1 through 9.
(i) If the sum is odd, what is the probability that 2 is one of the numbers selected?
(ii) If 2 is one of the digits selected, what is the probability that the sum is odd?

Four persons, called North, South, East and West, are each dealt 13 cards from an ordinary deck

of 52 cards.

(i) If South has exactly one ace, what is the probability that his partner North has the other
three aces?

(ii) If North and South together have 10 hearts, what is the probability that either East or
West has the other 3 hearts?

A class has 10 boys and 6 girls. Three students are selected from the class at random, one after
the other. Find the probability that (i) the first two are boys and the third is a girl, (ii) the first
and third are boys and the second is a girl, (iii) the first and third are of the same sex, and the
second is of the opposite sex,

In the preceding problem, if the first and third students selected are of the same sex and the second
student is of the opposite sex, what is the probability that the second student is a girl?

In a certain town, 40% of the people have brown hair, 26% have brown eyes, and 15% have both
brown hair and brown eyes. A person is selected at random from the town.

(i) If he has brown hair, what is the probability that he also has brown eyes?

(ii) If he has brown eyes, what is the probability that he does not have brown hair?

(iii) What is the probability that he has neither brown hair nor brown eyes?

Let A and B be events with P(4) = §, P(B) = } and P(AUB) = }. Find (i) P(A|B),
(if) P(B | A), (iii) P(ANBe), (iv) P(4 | Be).

Let S = {a,b,c,d,e.f} with P(a) = &, P(b) = &, P() = 4, P(d) = #, Pl) = } and
P(f) = 5. Let A = {a,c,¢}, B = {e,d,e,f} and C = {b,c,f}. Find (i) P(A|B), (i) P(B|C),
(iii) P(C | A¢), (iv) P(A°|C).

In a certain college, 25% of the boys and 10% of the girls are studying mathematics. The girls
constitute 60% of the student body. If a student is selected at random and is studying mathematics,
determine the probability that the student is a girl.
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FINITE STOCHASTIC PROCESSES
444. We are given two urns as follows:

4.45.

4.46.

4.47.

4.48.

4.49.

4.50.

4.51.

4.52.

4.53.

Urn A contains 5 red marbles, 3 white marbles and 8 blue marbles.
Urn B contains 3 red marbles and 5 white marbles.

A fair die is tossed; if 3 or 6 appears, a marble is chosen from B, otherwise a marble is chosen
from A. Find the probability that (i) a red marble is chosen, (ii) a white marble is chosen,
(iii} a blue marble is chosen.

Refer to the preceding problem. (i) If a red marble is chosen, what is the probability that it came
from urn A? (ii) If a white marble is chosen, what is the probability that a 5 appeared on the die?

An urn contains 5 red marbles and 3 white marbles. A marble is selected at random from the urn,
discarded, and two marbles of the other color are put into the urn. A second marble is then selected
from the urn. Find the probability that (i) the second marble is red, (ii) both marbles are of the
same color.

Refer to the preceding problem. (i) If the second marble is red, what is the probability that the
first marble is red? (ii) If both marbles are of the same color, what is the probability that they
are both white?

A box contains three coins, two of them fair and ohe two-headed. A coin is selected at random
and tossed twice. If heads appears both times, what is the probability that the coin is two-headed?

We are given two urns as follows:

Urn A contains 5 red marbles and 3 white marbles.

Urn B contains 1 red marble and 2 white marbles.
A fair die is tossed; if a 3 or 6 appears, a marble is drawn from B and put into A and then a marble
is drawn from A; otherwise, a marble is drawn from A and put into B and then a marble is drawn
from B.
(i) 'What is the probability that both marbles are red?

(ii) 'What is the probability that both marbles are white?

Box A contains nine cards numbered 1 through 9, and box B contains five cards numbered 1
through 5. A box is chosen at random and a card drawn; if the card shows an even number,
another card is drawn from the same box; if the card shows an odd number, a card is drawn from
the other box.

(i) 'What is the probability that both cards show even numbers?

(ii) If both cards show even numbers, what is the probability that they come from box A?

(iii) What is the probability that both cards show odd numbers?

A box contains a fair coin and a two-headed coin. A coin is selected at random and tossed. If
heads appears, the other coin is tossed; if tails appears, the same coin is tossed.

(i) Find the probability that heads appears on the second toss.

(ii) If heads appeared on the second toss, find the probability that it also appeared on the first toss.

A box contains three coins, two of them fair and one two-headed. A coin is selected at random
and tossed. If heads appears the coin is tossed again; if tails appears, then another coin is selected
from the two remaining coins and tossed.

(i) Find the probability that heads appears twice.

(ii) If the same coin is tossed twice, find the probability that it is the two-headed coin.

(iii) Find the probability that tails appears twice.

Urn A contains « red marbles and y white marbles, and urn B contains z red marbles and v white

marbles.

(i) If an urn is selected at random and a marble drawn, what is the probability that the marble
is red?

(ii) If a marble is drawn from urn A and put into urn B and then a marble is drawn from urn B,
what is the probability that the second marble is red?
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4.54.

4.55.

A box contains 5 radio tubes of which 2 are defective. The tubes are tested one after the other
until the 2 defective tubes are discovered. What is the probability that the process stopped on the
(i} second test, (ii) third test?

Refer to the preceding problem. If the process stopped on the third test, what is the probability
that the first tube is nondefective?

INDEPENDENCE

4.56.

457,

4.58.

4.59.

4.60.

4.61.

4.62.

Prove: If A and B are independent, then A and B¢ are independent and A¢ and B are independent.

Let A and B be events with P(A) = }, P(AUB) = 4 and P(B) = p. (i) Find p if A and B are
mutually exclusive. (ii) Find p if A and B are independent. (iii) Find p if 4 is a subset of B.

Urn A contains 5 red marbles and 3 white marbles, and urn B contains 2 red marbles and
6 white marbles.

(i) If a marble is drawn from each urn, what is the probability that they are both of the same
color?

(ii) If two marbles are drawn from each urn, what is the probability that all four marbles are
of the same color?

Let three fair coins be tossed. Let A = {all heads or all tails}, B = {at least two heads} and
C = {at most two heads}. Of the pairs (4,B), (4,C) and (B,C), which are independent and
which are dependent?

The probability that A hits a target is 1} and the probability that B hits a target is }.
(i) If each fires twice, what is the probability that the target will be hit at least once?
(ii) If each fires once and the target is hit only once, what is the probability that A hit the target?

(iii) If A can fire only twice, how many times must B fire so that there is at least a 90% proba-
bility that the target will be hit?

Let A and B be independent events with P(A) = } and P(AUB) = §. Find (i) P(B), (ii) P(A|B),
(iii) P(Be| A).

Suppose 4, B, C are independent events. Show that any of the combinations
A¢, B,C;, A, B, C; ...; A¢,Be,C; ..., A¢, Be, Ce
are also independent. Furthermore, show that A and BUC are independent; and so forth.

INDEPENDENT TRIALS

4.63.

4.64.

4.65.

A rifleman hits (H) his target with probability .4, and hence misses (M) with probability .6. He
fires four times. (i) Determine the elements of the event A that the man hits the target exactly
twice; and find P(4). (ii) Find the probability that the man hits the target at least once.

A team wins (W) with probability .5, loses (L) with probability .3 and ties (T) with probability .2.
The team plays twice. (i) Determine the sample space S and the probabilities of the elementary
events. (ii) Find the probability that the team wins at least once.

Consider a countably infinite probability space S = {ay,a,,...}. Let
T = 8r = {(8y,8,...,8,) : &S}
and let P(sy, 8y, ..., 8, = P(3)) P(gy) - -+ P(s,)

Show that 7 is also a countably infinite probability space. (This generalizes the definition (page 58)
of independent trials to a countably infinite space.)
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4.31.

4.32.

4.33.

4.34.

4.35.

4.36.

4.37.

4.38.

4.39.

4.49.

4.50.

4.51.

CONDITIONAL PROBABILITY AND INDEPENDENCE

Answers to Supplementary Problems

(i) §

(i) 3, (iv) }

(D3 () F i) § (v) §

3 440. () §, Gi) 2,
3 441, (i)}, Gi) 4,
£ 4.42.
2(%) o
(256) = 330 443. §
. ¢ 1003
¢ @ 144, () §
© 1, ) (ii) }
i) 4, @i
i § (iii) §
(;’;’) 703 (fg) 50 S \
445, (S, ()
(1) fsemi*H = ot
o s o 1 146, ()&, )
(i) 5°@7°3 = 901
(i) 5+ %5 = = 41, ()2, i) S
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Tree diagram for Problem 4.50
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452, (i) L +H+4 =4 () 4 (i)
H< i‘ b } D

i _H
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3 1 g 3D 3D
1} DéN N—L_p
3 H < ] 3
T ¢
N _& D
4 A D N—1
T< ) ) 3 D
c N
1 t~~—L1 p- L p
Tree diagram for Problem 4.52 Tree diagram for Problem 4.54

488 ) T ) oians

454. (i) {4, (i) :%; we must include the case where the three nondefective tubes appear first, since
the last two tubes must then be the defective ones.

455. 3

457, () 5 Gi) 3, GiD) }

458. (i) 76, (i) 23

459. Only A and B are independent.
4.60. (i) 3, (i) 3, (iii) 6

46l ()}, Gi) 3, (i) 3

463, (i) A = {HHMM, HMHM, HMMH, MHHM, MHMH, MMHH}, P(4) = .3456
(i) 1—(6)¢ = .8704

464. (i) S = {WW,WL,WT, LW, LL, LT, TW, TL, TT}
(i) .6



