Name:	
Date:	 _

PROBABILITY

The **Probability** of an event happening is defined as the number of ways the desired outcome could (or did) happen as a ratio (fraction, percent) with the number of all possible outcomes (or trials).

 $Prob(outcome 'A') = \frac{\# of \ desired \ outcomes 'A'}{Total \ \# of \ possible \ outcomes}$

You draw one of the cards without looking (ie: randomly). Write the probability as a reduced fraction and as a percent.

a.	Prob(Janet) =	/ ;	%
	(

- b. Prob(Jared) = ____; ____%
- c. Prob(Juan) = ___/__; ___%
- d. Prob(first letter is a J) = ____/___;
 e. Prob (first letter is not a J) = _____

/ ;____

Cards:

	Jared	Janet	Janet
	Juan	Juan	Juan
, , , ,	Random no outcom favoured are all eq likely	meths is They wally P	her notation o show Not J
_%		0	-
_%		• P+.	•b(~J)

Sample Space. A sample space is a *list of all the possible outcomes* or events! (An event is simply a combination of basic outcomes). Example: list the possible events for the flipping of two coins: a **loonie** and a **quarter**; each can come up **H**ead or **T**ail.

The set of all possible outcomes: { (H_1, H_q) , (H_1, T_q) , (T_1, H_q) , (T_1, T_q) }

Or since you are only combining two outcomes you *might* do a table:

		Loonie	
		Head	Tail
Quarter	Head	(H _I , H _q)	(T _I , H _q)
	Tail	(H_{I}, T_{q})	(T_{l}, T_{q})

Another useful way to generate a more complicated **sample space** is to use an Outcome Tree

You [randomly] draw one of the coloured marbles from the bag. Calculate:

> Prob(B) =— or % $Prob(\overline{B}) = - or$ % Prob(Yellow) = - or%

Complementary. Have you noticed that the probability of something happening and the probability of it not happening adds up to 100%? They are 'complementary' events.

$$Prob(A) + Prob(\overline{A}) = 100\% = 1$$

Or you could say: $Prob(\overline{A}) = 1 - Prob(A);$

ie: The probability of something not happening is 1 minus the probability it does happen! WOW!

Example: If there is a 30% chance of rain today, there is a 70% chance of it **not** raining!

> Prob(NOT Rain) = 100% - Prob(Rain)Prob(NOT Rain) = 100% - 30% = 70%

Manipulate Probability Formula. A company knows that 1% of the bolts that they make are defective. If they produce 250,000 bolts, how many will [likely] be defective?

 $Prob(defective) = \frac{\# of \ defectives}{Total \ \# of \ bolts}$ $0.01 = \frac{\# \ of \ defectives}{250,000}$

of defectives = 0.01 * 250,000 = 2,500

There will be an *expectation* of 2,500 defective bolts. But it may be 2483 or 2532 or somewhere around 2500 plus or minus (±) a few ! You only *expect* an average of 2,500 defectives if you select different batches of 250,000 bolts.

You spin the spinner at the right.

a. Calculate the probability it will stop at 'six':
 or _____% (in theory!)

b. If you spin it 20 times, predict how many times you would '*expect*' it to stop on '6'.

c. If you spin it 200 times, predict how many times you would '*expect*' it to stop on '6'.

Experimental vs Theoretical Probability.

They are both the same calculation. But sometimes you do not know the probability of something happening (like flipping a coin); sometimes you have to calculate it *yourself* by doing an '*experiment*'. To do a successful experiment you would need to do lots of '*trials*'. Flip a paper cup 50 times (ie: 50 trials) and see how often it lands on: the **rim**, the **bottom**, the **side**.

Outcome	Count (tally)	Prob [%]
Rim	12	24%
Bottom	8	16%
Side	30	60%
Total(s)	50	100%

You do your own experiment. Use 50 trials. Calculate your experimental probabilities for flipping a paper cup. Record your results here. Compare with other students, should they not be close to the same result?

Outcome	Count (tally)	Prob [%]
Rim		
Bottom		
Side		
Total(s)	50	100%

Should your experiment and others' not give the exact same result? Explain:

Permutations, Combination, Combinatorics. Notice that to calculate probabilities you need to be able to **count**! *Counting is not all that easy*! We will learn lots of ways to count in **Applied Math** when we study Permutations and Combinations. So to **whet your appetite**, what is the Probability of being dealt four aces in a five card hand?

How many possible poker hands are there? **Ans**: 2,598,960 (how do I know that!? Wait for Grade 12 Applied! How many five card poker hands have four aces? **Ans**: 48.

So Prob (4 Aces) = $\frac{48}{2,598,960} = \frac{1}{54,145} = 0.000018468 = 0.0018468\%$

So if you play 54,145 poker hands you *might expect* to win likely once on average. **Or** you could possibly (but improbably) win the very first hand! Heck you could win **twice** in a *row*! One chance in 2,931,681,025 of that happening! **Good Luck**!