GRADE 12 APPLIED DEPENDENT AND INDEPENDENT EVENTS

Name:	

Read and do the related notes. Complete this instructional document, filling in blanks.

Mike is a star football quarterback but he sits out half the games due to injury. The way we say that is **P(Mike Play) = 0.5**.

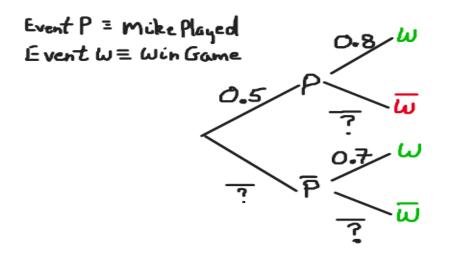
If Mike does play then the team has an 80% chance of winning. The way we say that is $P(Win \mid Mike Plays) = 0.8$; which is read as 'the probability of a Win given that Mike played is 0.8'. Or think of it as 'If mike plays then the probability of a win is 0.8'. Thus suggesting that a win likely depends on whether Mike plays or not. (but not necessarily, wait for it)

Of course if there is an 80% chance of winning there is a _____ % of **not winning**.

It turns out we know that when Mike Does Not Play that the team only wins 70% of the time. We can say this as $P(Win \mid Mike Does NOT Play) = 70\%$. So given that Mike does not play there is 70% chance the team will still win, which means there is a _____% chance they will Not Win.

(Notice I say NOT Win instead of lose since lose would exclude ties)

Inspect the probability tree below and complete the (?) blank values.



1

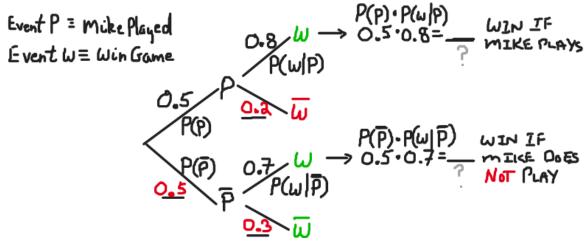
Calculate the Probability the Teams wins a game

Sometimes Mike plays sometimes he doesn't. He might play **OR** he might not play. The Probability of a Win is different depending on whether Mike Plays or not. P(Win | Mike Plays) = _____. P(Win | Mike does not Play) = _____.

So clearly the probability of a win depends on whether Mike plays or not; which is why we call it **Dependent Probability**.

Lets us calculate the probability of just a any Win regardless of whether Mike plays or not.

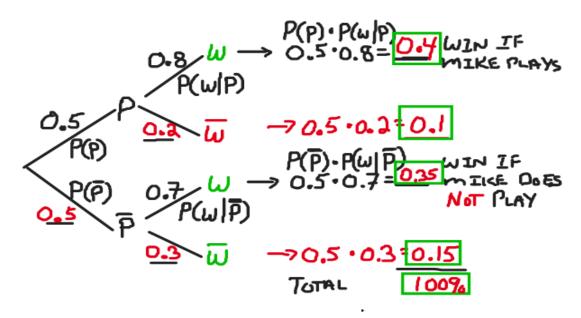
Complete the blanks below:



So there are two ways to win. With Mike or Without Mike

OR!!! '**Or**' pretty much always means **ADD**! We add the probabilities.

Probability of any Win = $P(P) * P(W|P) + P(\overline{P}) * P(W|\overline{P})$ = 0.4 + 0.35 = 0.75 = 75% Notice that following and including the other branches, the 'losing' paths, makes everything work out to 100%. (otherwise a bit suspicious)



So that was easy, the chance of a Win depended on whether Mike played or not. This was a dependent situation. The Win event was Dependent on the Mike Plays event

So can we do the same type of calculations backwards?

Sure.

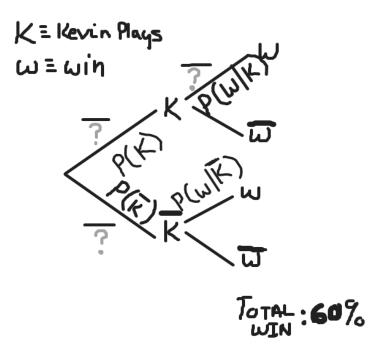
KEVIN PLAYS FOOTBALL TOO

Kevin is another football player. The probability he **does not** play is 20%. **If** he plays the team wins 60% of their games. This season the team won 60% their games overall. So does winning depend on whether or not Kevin played?

What do you think? Does winning depend on whether Kevin Plays? Circle one choice: Yes / No

Now fill out the Probability Tree with what we know!

You fill in the blanks



So:

Probability of any Win = $P(K) * P(W|K) + P(\overline{K}) * P(W|\overline{K}) = 0.6$ ie: the probability that the teams wins if Kevin plays or does not play is 60%

so: $P(K) * P(W|K) + P(\overline{K}) * P(W|\overline{K}) = 0.6$ $0.8 * 0.6 + 0.2 * P(W|\overline{K}) = 0.6$

So solve for $P(W|\overline{K})$; the probability the team wins 'given that' Kevin **does not** play.

$$0.48 + 0.2 \cdot x = 0.6$$

$$-0.48 - 0.48$$

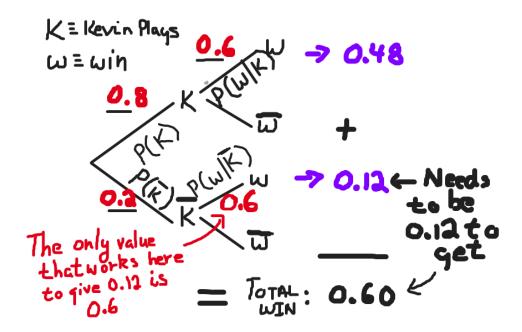
$$0.2x = 0.12$$

$$0.2x = 0.12$$

$$7x = 0.6 = 60\%$$

So it does not matter whether Kevin Plays or not!

Probability of a win when **he does play**, P(W|K), is 60% and Probability of a win when he **does not play**, $P(W|\overline{K})$, is 60%. So winning or losing is independent of whether or not he plays.



So we now have a method to calculate whether situations two events are dependent or independent.

NOW Calculate Kevin all over again, this time the team still wins 60% of the time. But the $P(W|\mathbf{K})$ is 0.5.

So calculate what is $P(W|\overline{K})$, probability of a win if Keven does not play!

 $P(W|\overline{K}) =$ _____

Explain if Kevin is a useful team member in a proper paragraph!