

GRADE 11 ESSENTIAL UNIT F - RELATIONS AND PATTERNS WORKSHEET 2 CALCULATING SLOPE, HORIZONTAL LINES, VERTICAL LINES

1. The **slope** of a line is the same as the slope (or *direction*) between any two points on the line.

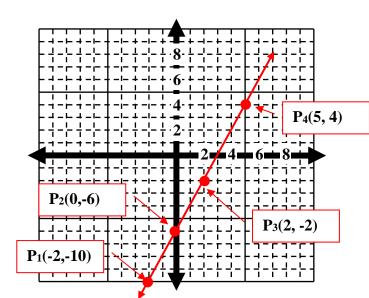
Name:

2. The **slope** of the line has been defined as how much a line **rises divided** by how much it *runs to the right*. $slope \equiv m \equiv \frac{\Delta y}{\Delta x} = \frac{rise}{run}$ 3. In other words the slope of a line is the **change** in the *y* divided by the change in the *x* between any two points on the line. It is a ratio comparison.

$$slope \equiv m \equiv \frac{increase \ in \ y}{increase \ in \ x}$$

4. Slope can now be *defined* as: $m = \frac{(y_2 - y_1)}{(x_2 - x_1)}$; as shown below.

5. **Example**: line y = 2x - 6


Point	X	у
P 1	-2	-10
P 2	0	-6
P 3	2	-2
P 4	5	4

Lets pick any two points; say P₁ and P₂

The change in y to go from P_1 to P_2 is +4

The change in *x* to go from P_1 to P_2 is +2

So the slope is 4/2 or m = 2

6. You don't actually have to count lines on a graph!. You can just find the difference between the x coordinates and then the y coordinates of two points. (remember how *difference* means *subtract*!). Let's do it for P₁ and P₂ above.

$$slope = m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{-6 - (-10)}{0 - (-2)} = \frac{+4}{+2} = 2$$

Gr11Ess_F_LinesWorksheet2.docx

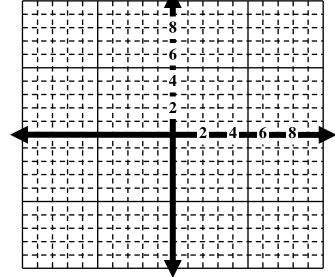
7. **You** try finding the slope between P_3 and P_4 now. It should be exactly the same as above since a line has a constant slope. Use the slope formula to calculate the slope.

$$slope = m = rac{y_4 - y_3}{x_4 - x_3} =$$

8. Find the slope for different lines that have the following points on them:

D	D	CI	the same as adding!
P 1	P ₂	Slope	
(0,0) (2,8)			Plot the points on the graph paper
			below also to see that the slope formula
			does work!
(0, 4)	(2, 6)		
(-3,-3)	(7, 2)		
(0 , 0)	(', -)		
(-5, 2)	(-3,-3)		
(-3, 2)	(-3,-3)		
			┝───┽─┝─┤─┽─┝─┤─┽─┝─┤─┽─┝─┤─┽─┝─┤
			╶╴┍╶╷╴╿╴┍╶╷╴┫╴┍╶╷╴┍╶╷╴╿╴╷╴┍╶┥╴┍╶┥
(2, 2)	(5.2)		──── ╞╼┉╸ ╆╶┍╶┅╴┥╴┰╶┍╶┑╴┰╶ ┣ ╶┅╴┰╶┍╶┅╴┥╴┰╶┍╶┅╴┑
(3, 2)	(5, -2)		┝╶╎╴┥╴╄╶┝╶╎╴┫╴╄╶└╴┥╴╄╶╎╴┫╴╄╶╎╴┥╴╫╶└╴┥
			┍╶┍╴┥╴┽╺┝╶┍╴┥╸┿╺┍╸┥╸┽╺┝╶┥╴┽╺┝╶┥╴╅╺┍╴┥
			╎╌╎╶╎╴╎╴╎╴╎╴╎ <u>┨</u> ╴╎╴╎╴╎╴╎╴╎╴╎╴╎╴╎╴╎

HORIZONTAL LINES


9. Calculate the **slope** of the line between the points **P**₁(-2, 4) and **P**₂(5, 4). Write it below showing formula!:

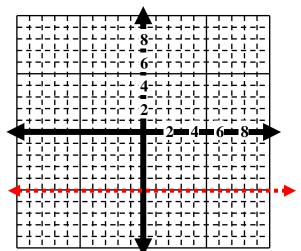
10. Try these points too: **P**₁(-5, 7) and **P**₂(2, 7)

Plot the two points at the left here:

Caution!! Watch those 'minus

minuses'. Subtracting a negative is

11. Notice the points on the lines above have the same y value. All points on the lines will have the same y-value. The lines are **Horizontal**. Both have a **slope of zero**. So their formula given y=mx + b is just y = b. In other words, y is a constant no matter what the x is! That is a **Horizontal line**!


12.	The equation	for a horizontal	line is just $y = $	[a constant]
	1		J J .	

think of horizon! The horizon is horizontal!

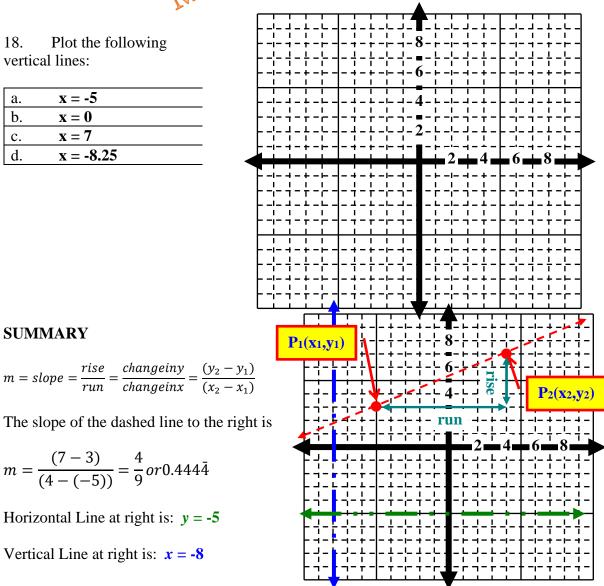
13. Plot the following *horizontal* lines on the graph to the right

a.	y = 8
b.	y = -2
c.	y = 3
d.	y = -7.25

14. What is the equation for the dotted line?

VERTICAL LINES

15. What is the slope of the line that contains the points $P_1(-5, -3)$ and $P_2(-5, 7)$?


16. In mathematics, you can never get an answer by dividing by zero. (how can you *divide* something into zero bunches??). We say that the operation of dividing by **0** is *undefined*. $\frac{3}{0} =$? would mean that 0^* ? = 3. We have no way of having 0 bunches of something that makes 3 total

17. The equation for a **Vertical** line is just $\mathbf{x} = [\mathbf{a} \text{ constant}]$. All points on that vertical line have the same \mathbf{x} value. The \mathbf{x} value never changes for any specific vertical line.

18. Plot the following vertical lines:

a.	x = -5	
b.	$\mathbf{x} = 0$	
c.	$\mathbf{x} = 7$	
d.	x = -8.25	

THINKING AHEAD – BRAIN TEASERS

Given a line: y = 3x + 2, can you give an equation of a parallel line? (hint: a line that goes the same direction!)

How many different lines are there that are parallel to the one given above (y = 3x + 2)?

What is another way to think about dividing by zero? (hint: can we divide by a number close to zero instead)