

GRADE 11 ESSENTIAL UNIT C – 3-D GEOMETRY APPENDIX - GEOMETRIC FORMULAE

Shape	Diagram	Formulae
	FLAT OBJECTS 2 DIMENSIONAL	
Square (all four sides same length, 90°corners)		Perimeter, P: P = s + s + s + s = 4*s Area, A: $A = s * s = s^{2}$
(a rectangle with all sides same length)	<u>b</u>	$\mathbf{A} = \mathbf{S} + \mathbf{S} = \mathbf{S}^{-1}$
Rectangle	·····	
(Four sides, square corners)		Perimeter, P: P = l + w + l + w = 2l + 2w Area, A:
	L	$\mathbf{A} = \boldsymbol{l}^* \boldsymbol{w}$
Parallelogram and Rhombus		Perimeter; P: P = 2b + 2s
(leaning rectangle or leaning square)		Area; A: A = b * h
Note		
b is always \perp to n		[b and h; perpendicular; at 90°]
Trapezoid (Four sides, only two sides parallel { ' ' }) ***Note***	$\begin{array}{c c} b_1 & \dots \\ s_2 & h & s_1 \\ b_2 & \dots & b_2 \end{array}$	Perimeter; P: $P = b_1 + s_1 + b_2 + s_2$ Area; A: $A = b_{average} * h$ $= \frac{1}{2}(b_1 + b_2) * h$
b is always ⊥ to h [perpendicular; at 90°]		2

(Two congruent rectangles connected at edges by rectangles)

SA = Add area of all faces; *or* SA = 2lw + 2hl + 2hw

Volume; V:

V = Basearea*h $\mathbf{V} = (\mathbf{l}^* \mathbf{w})^* \mathbf{h}$

Triangular Prism

(Two congruent triangles connected at edges by rectangles)

Gets confusing using height for the triangle, h_i , and height for the prism, h_{prism} .

Sphere

All the points in space that are equidistant from a single centre point

(Ball)

Cylinder

(Two congruent circles connected with a rectangle wrapped around circumference)

Rectangular Pyramid or Square Pyramid

(A rectangle connected to an apex point by triangles on its edges)

caution the pyramid has a height, and the triangular faces each have a height

object

base

h

Surface Area; SA

SA = Add area of all faces; the net is two triangles and three rectangles.

 $SA = P_{base}h_{prism}+bh_t$ (fancy) Volume; V: V = Basearea * h

$$\mathbf{V} = \frac{1}{2}bh_{t\,riangle} * h_{prism}$$

Surface Area; SA

 $SA = 4\pi r^2$

Volume; V:

Surface .	Area; SA	lateral 4 side
SA	$=2\pi r^2+2$	2πrh
Volume;	V: 7	Lube

 $V = Base_{area} * h$ = A * h $= \pi r^{2}h$

Surface Area; SA

SA = add up area of all the faces (Base area plus four triangles)

Volume; V:

$$V = \frac{1}{3} * Base_{area} * h_{pyramid}$$
$$= \frac{1}{3} * (l * w) * h_{pyramid}$$

Triangular Pyramid

(A triangle base connected to an apex point by triangles on its edges)

**caution the pyramid has a height h_{object} , and the triangular faces have a height, h_{Δ} **

Cone

(The arc of a circular sector of a circle connected to a smaller circle base and coming to an apex point)

S

Surface Area; SA

SA = add up area of each of the four triangular faces.

Volume; V: $V = \frac{1}{3} * Base_{area} * h_{pyramid}$ $\frac{1}{3} * \left(\frac{1}{2} * b_{\Delta} * h_{\Delta}\right) * h_{object}$ $= \frac{1}{6} * b_{\Delta} * h_{\Delta} * h_{object}$

Surface Area; SA

 $SA = \pi r^{2} + \pi rs$ ('s' here is 'slant range' along the side of the cone)

Volume; V: $V = \frac{1}{3} * Base_{area} * h_{cone}$ $V = \frac{1}{3} * (\pi r^2) * h_{cone}$

Letter Abbreviations:

 $r \equiv radius$, $d \equiv diameter$; $h \equiv height$; $A \equiv area$; $l \equiv length$; $w \equiv width$; $B = Base_{area}$

 $s \equiv side$ or *sometimes* slant range; $\perp \equiv$ perpendicular

And do not forget Pythagoras!

Pythagoras

$$\mathbf{c}^2 = \mathbf{a}^2 + \mathbf{b}^2$$

where c is the length of the hypotenuse and a and b are the lengths of the shorter two sides

Add your own favourite formulae below: