

## GRADE 10 ESSENTIAL UNIT C – MEASUREMENT WORKBOOK

## Instructions

Use any conversion ratios you have available.

## CONVERT METRIC (SI) SYSTEM TO METRIC (SI) SYSTEM

1. Complete the table (use decimal values of course since it is metric)

| 3. Complete the table (use decimal values of |
|----------------------------------------------|
| course since it is metric)                   |

| metres (m) | centimetres (cm) |
|------------|------------------|
| 1          | 100              |
| 2          |                  |
| 3          |                  |
|            | 400              |
| 4.5        | 450              |
|            | 700              |
| 1,245      |                  |
| 7,100      |                  |
|            | 438              |
|            | 57.0             |
|            | 5.7              |

| kilograms (kg) | grams (g) |
|----------------|-----------|
| 1              | 1,000     |
| 2              |           |
| 3              |           |
|                | 4,000     |
| 4.5            | 4,500     |
|                | 7,000     |
| 4.165          |           |
| 8.1            |           |
|                | 7,320     |
|                | 76.0      |
|                | 7.3       |

2. Convert using proportions (solve for x):

a. 
$$\frac{100 \ cm}{1 \ m} = \frac{x \ cm}{3 \ m}; \quad \therefore \mathbf{x} =$$
\_\_\_\_\_

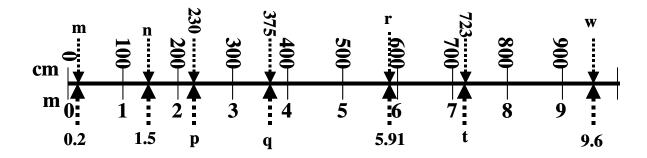
4. Convert using proportions (solve for x):

a. 
$$\frac{1000 \ g}{1 \ kg} = \frac{x \ g}{3 \ kg}; \quad \therefore \ \mathbf{x} = \_\_\_$$

b. 
$$\frac{100 \ cm}{1 \ m} = \frac{400 \ cm}{x \ m}; \therefore \mathbf{x} =$$
\_\_\_\_\_

b. 
$$\frac{1000 \ g}{1 \ kg} = \frac{76 \ g}{x \ kg}; \therefore \mathbf{x} =$$
\_\_\_\_\_

c. 
$$\frac{1}{100} \frac{m}{cm} = \frac{x}{400} \frac{m}{cm}$$
;  $\therefore \mathbf{x} =$ \_\_\_\_\_ c.  $\frac{1}{1,000} \frac{kg}{g} = \frac{x}{76} \frac{kg}{g}$ ;  $\therefore \mathbf{x} =$ \_\_\_\_\_


*note*: check  $b \& c \uparrow$ ; easier if unknown unit is in top of proportion; less 'swapping'!

| r. | - |   |   |    |    |    |    |    |   |    |   |    |   |   |   |    |     |    |    |          |   |   |    |    |   |   |   |    |    |    | <br> | <br> | <br> | <br> | <br> |
|----|---|---|---|----|----|----|----|----|---|----|---|----|---|---|---|----|-----|----|----|----------|---|---|----|----|---|---|---|----|----|----|------|------|------|------|------|
|    | ( | G | R | 1( | 01 | ES | 55 | 5_ | ( | 2_ | 0 | 20 | n | V | e | rs | sic | IC | ٦_ | <u>\</u> | N | 0 | rk | ٢t | C | 0 | k | .0 | lc | oc |      |      |      |      |      |
| L  |   |   |   |    |    |    |    |    |   |    |   |    |   |   |   |    |     |    |    |          |   |   |    |    |   |   |   |    |    |    |      |      |      |      |      |
| -  |   |   |   |    |    |    |    |    |   |    |   |    |   |   |   |    |     |    |    |          |   |   |    |    |   |   |   |    |    |    | <br> | <br> | <br> | <br> | <br> |

Revised:161019



5. Convert using a number line:



State the measure of the following positions on the number line  $\uparrow$ .

m = \_\_\_\_; n = \_\_\_\_; p = \_\_\_\_; q = \_\_\_\_\_ r = \_\_\_\_; t = \_\_\_\_; w = \_\_\_\_

6. Convert the following metric lengths using proportions:

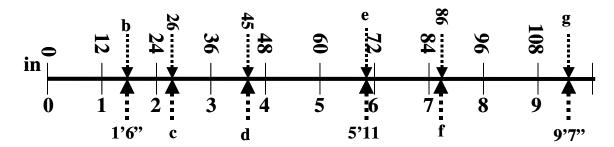
a. 
$$\frac{100 \text{ cm}}{1 \text{ m}} = \frac{\text{'m' cm}}{0.2 \text{ m}}$$
 b.  $\frac{100 \text{ cm}}{1 \text{ m}} = \frac{\text{'n' cm}}{1.5 \text{ m}}$  c.  $\frac{100 \text{ cm}}{1 \text{ m}} = \frac{230 \text{ cm}}{\text{'p' m}}$ 

d. 
$$\frac{'q'm}{375 cm} = \frac{1 m}{100 cm}$$
 e.  $\frac{'r'cm}{5.91 m} = \frac{100 cm}{1 m}$  f. you do the rest elsewhere

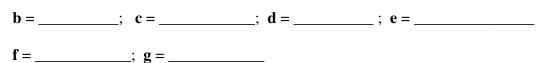
7. Convert using unit factors: (put the new unit in the top of the conversion factor)

Example: 
$$0.2 \text{ m} = 0.2 \text{ m} * \frac{100 \text{ cm}}{1 \text{ m}} = 20 \text{ cm}$$
  
a.  $1.5 \text{ m} = 1.5 \text{ m} * \frac{(\ ) \text{ cm}}{(\ ) \text{ m}} = \text{ cm}$  b.  $230 \text{ cm} = 230 \text{ cm} * \frac{1 \text{ m}}{100 \text{ cm}} =$   
c.  $375 \text{ cm} = 375 \text{ cm} * \frac{\text{ m}}{\text{ cm}} =$  d.  $5.91 \text{ m} = 5.91 \text{ m} * ---- = \text{ cm}$ 

Imperial, or British, or Customary System of measurement. The '*old*' system we do not use anymore! (?)

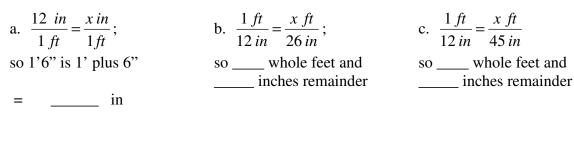

8. Complete the table (**do not use** decimal values of course, that is *mainly* for the metric system!)

9. Complete the table (**do not use** decimal values of course, that is *mainly* for the metric system!)


| feet (ft) and inches               | inches (in)   |
|------------------------------------|---------------|
| 1 ft                               | 12 in         |
| 2 ft                               |               |
| 3 ft                               |               |
|                                    | 48 in         |
| 4' 2" or 4 ft 2 in                 | 50 in         |
|                                    | 120 in        |
|                                    | 131 in        |
| 5' 10" or 5ft 10 in                |               |
|                                    | 70 in or 70 " |
| 8' 3 <sup>3</sup> / <sub>4</sub> " |               |
|                                    | 102 3/8"      |

| pounds (lb)and oz     | ounces (oz)   |
|-----------------------|---------------|
| 1 lb                  | 16 oz         |
| 2 lb                  |               |
| 3 lb                  |               |
|                       | 48 oz         |
| 5lb 7oz               | 87oz          |
|                       | 120 oz        |
| 12 lb 5 oz            |               |
| 8.125 lbs             |               |
|                       | 4 oz          |
|                       | 8 oz          |
| 12.4 lbs              |               |
| no such thing really! | to nearest oz |

10. Convert using the number line:




11. State the measure of the following positions on the number line  $\hat{1}$ .





12. Convert the following imperial (ie: 'British' or 'conventional') lengths using proportions. There is no such thing as a decimal foot; only whole feet! So the remaining inches are just leftover inches and sometimes fractions of inches



d.  $\frac{12 \text{ in}}{1 \text{ ft}} = \frac{x \text{ in}}{5 \text{ ft}};$ so 5ft 11in is 5ft plus 11in

= \_\_\_\_\_ in

- e.  $\frac{1 ft}{12 in} = \frac{x ft}{86 in}$ so \_\_\_\_\_ whole feet and \_\_\_\_\_ inches remainder
- f. you do the rest elsewhere:

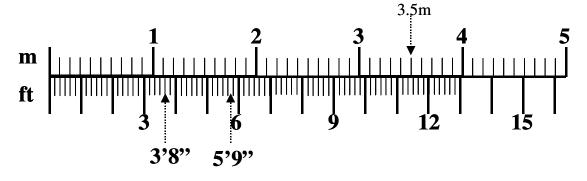
### **CONVERT BETWEEN IMPERIAL SYSTEM AND METRIC SYSTEM**

13. Complete the table (convert metres to the nearest 0.01 or better, express imperial units as feet and nearest inch where indicated).

14. Complete the table (convert kilograms to nearest 0.01, calculate ounces to the nearest oz)

| metres (m) | feet (ft) and inches |
|------------|----------------------|
| 1          | 3.2808               |
|            | just use 3.28        |
| 2          | ft in                |
| 3.5        | ft in                |
|            | 4ft 6 inches         |
| 137.20 m   | 450 ft               |
|            | 70ft 8 in            |
| 1,245 m    | ft                   |
| 7,100 m    | ft                   |
|            | 438 ft               |
|            | 57 ft                |
|            | 5 ft 9 in            |
| 0.45 m     | ft in                |

| pounds (lb) and oz          | kilograms (kg) |
|-----------------------------|----------------|
| 2.205                       | 1.000          |
| just use 2.2                |                |
| 4.4 lb no such thing really |                |
| 6.6 lb no such thing really |                |
|                             | 4.00 kg        |
| 10 lb 2 oz                  | 4.60 kg        |
|                             | 7.95 kg        |
| 4 lb 5oz                    |                |
| 8 lb 8 oz                   |                |
|                             | 78.42 kg       |
|                             | 76.09          |
| 73 lbs 9 oz                 |                |
|                             |                |




#### 15. Convert using proportions (ie: cross multiplying)

a.  $2 \text{ m} = \____ \text{ft}$  and  $\____ \text{inches}$ ? b.  $40 \text{ ft} = \___ \text{m}$ ?  $\frac{3.28 ft}{1 m} = \frac{x ft}{2 m};$  $\frac{3.28 \ ft}{1 \ m} = \frac{40 \ ft}{x \ m}; \therefore x =$ \_\_\_\_\_ ∴ x = \_\_\_\_\_\_ whole feet plus \_\_\_\_\_\_ twelfths of a foot c. 7,100 m =\_\_\_\_\_ ft? (to nearest foot) d. 40 ft =\_\_\_\_ m ?  $\frac{3.28 \ ft}{1 \ m} = \frac{x \ ft}{7,100 \ m}; \therefore \mathbf{x} = \underline{\qquad} \qquad \frac{1 \ m}{3.28 \ ft} = \frac{x \ m}{40 \ ft}; \therefore \mathbf{x} = \underline{\qquad}$ e. 70 ft 8 inches = \_\_\_\_\_ m f. 5 ft 9 inches = \_\_\_\_\_ m  $\frac{1m}{3.28 \ ft} = \frac{xm}{70\%_2 \ ft}; \therefore \mathbf{x} = \underline{\qquad} \qquad \frac{1m}{3.28 \ ft} = \frac{xm}{5\%_2 \ ft}; \therefore \mathbf{x} = \underline{\qquad}$ g. 10 lb 2oz = \_\_\_\_\_ kg h. 4.6 kg = \_\_\_\_\_ lb and \_\_\_\_oz  $\frac{1 \, kg}{2.2 \, lb} = \frac{x \, kg}{10 \, \frac{2}{16} \, lb}; \therefore \mathbf{x} = \underline{\qquad} \qquad \frac{2.2 \, lb}{1 \, kg} = \frac{x \, lb}{4.6 \, kg};$ ∴ x = \_\_\_\_\_\_whole pounds + \_\_\_\_\_\_\_ 'sixteenths' of a pound

16. Use this number line to *help* you see some conversions between measures in feet and the inches to and from metres.

6



#### 17. CONVERTING (INVERTING) CONVERSION RATIOS

I have told you that there are **0.6214** miles in **1 kilometre** (km)! A secret recipe to make one kilometre!

But you may have seen elsewhere that there is **1.609** kilometres in one mile!

We are saying the same thing!! If there are 0.6214 miles in one km, then how many km are there in one mile?

 $\frac{1 \, km}{0.6214 \, mi} = \frac{x \, km}{1 \, mi}$ ; so  $\frac{1*1}{0.6214} = x = 1.609$ ; so there is 1.609 km in one mile.

It is like saying that if there are *4 raisins for every muffin* then there is a *quarter of a muffin for every raisin*! We are saying the same thing.

If there are **2.205 lbs** in **1 kg** (even though technically there is no such thing as 0.205 lbs since it would really be 3<sup>1</sup>/<sub>4</sub> ounces!) then how many kg are there in one pound?

 $\frac{1 kg}{2.205 lb} = \frac{x kg}{1 lb}$ ; so one pound (lb) is the same as \_\_\_\_\_ kg

#### 18. CONVERT USING (UNIT) CONVERSION FACTORS

A factor is something that you multiply another value by! The best factors are one that convert one unwanted unit of measure to a desired unit of measure.

a. Example 1: 3 ft = \_\_\_\_\_ inches

 $3 \chi * \frac{12 \text{ inches}}{1 \chi} = 36 \text{ inches};$  so multiply by :  $\frac{\text{wanted units}}{\text{unwanted units}};$  make sure they cancel.

b. Example 2: 37 weeks = \_\_\_\_ minutes;

 $\therefore 37 \text{ weeks} = 37 \text{ weeks} * \frac{7 \text{ days}}{1 \text{ week}} * \frac{24 \text{ hr}}{1 \text{ day}} * \frac{60 \text{ min}}{1 \text{ hr}} = 372,960 \text{ minutes}$ 

c. 17 ft = \_\_\_\_m; 
$$\therefore$$
 17 ft \*  $\frac{1 m}{3.28 ft}$  =

so: 183 lbs =

- e. 4.3 km = \_\_\_\_\_ m
- f. 4.3 km = \_\_\_\_ cm
- g. 57 litres = \_\_\_\_\_ ImpGal
- h. 2.3 miles = \_\_\_\_\_ inches
- i. 7.119 tons = \_\_\_\_\_ grams

# Advanced $\downarrow$ :

- j.  $30 \text{ km} / \text{hr} = \_\___ \text{m} / \text{sec}$
- k.  $299,000,000 \text{ m/sec} = \_$  miles per hour [mi/hr] (the speed of light)