GRADE 10 MATH LINEAR MODELS WORKSHEET 2

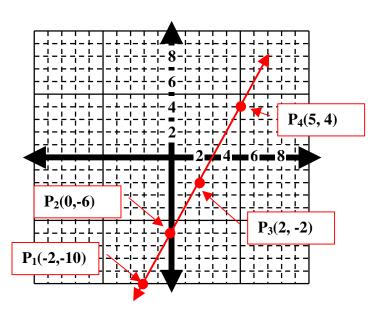
Name: _____ Date: _____

CALCULATING SLOPE, HORIZONTAL LINES, VERTICAL LINES

- 1. The **slope** of a line is the same as the slope (or *direction*) between any two points on the line.
- 2. The **slope** of the line has been defined as how much a line **rises divided** by how much it *runs to the right*. $slope \equiv m \equiv \frac{\Delta y}{\Delta x} = \frac{rise}{run}$
- 3. In other words the slope of a line is the **change** in the y divided by the change in the x between any two points on the line. It is a ratio comparison.

$$slope \equiv m \equiv \frac{increase \ in \ y}{increase \ in \ x}$$

- 4. Slope can now be *defined* as: $m = \frac{(y_2 y_1)}{(x_2 x_1)}$; as shown below.
- 5. **Example**: line y = 2x 6


Point	X	y
$\mathbf{P_1}$	-2	-10
P ₂	0	-6
P ₃	2	-2
P ₄	5	4

Lets pick any two points; say P_1 and P_2

The change in y to go from P_1 to P_2 is +4

The change in x to go from P_1 to P_2 is +2

So the slope is 4/2 or m = 2

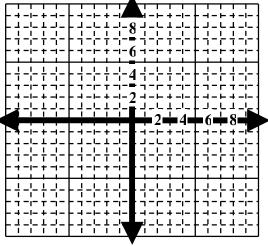
6. You don't actually have to count lines on a graph!. You can just find the difference between the x coordinates and then the y coordinates of two points. (remember how *difference* means *subtract*!). Let's do it for P_1 and P_2 above.

slope =
$$m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{-6 - (-10)}{0 - (-2)} = \frac{+4}{+2} = 2$$

7. You try finding the slope between P_3 and P_4 now. It should be exactly the same as above since a line has a constant slope. Use the slope formula to calculate the slope.

$$slope = m = \frac{y_4 - y_3}{x_4 - x_3} =$$

8. Find the slope for different lines that have the following points on them:


Caution!! Watch those 'minus minuses'. Subtracting a negative is the same as adding!

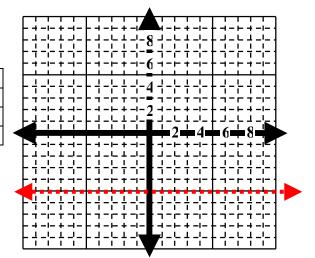
			the same as adding!	
\mathbf{P}_1	\mathbf{P}_{2}	Slope	<u></u>	
(0,0) (2,8)			Plot the points on the graph paper	
			below also to see that the slope formula	
			does work!	
			 	
(0, 4)	(2, 6)		╫╶┼╴┤╴┼╶├╶ ╏ ╸┤╴┤╴┼╶┞ ╶┋ ╴┤╴┼╶┞╶┼╴┤╴┼╶├	
(0, 4)	(2, 0)		# -!! - + - - 8 · - - + - - - + - +	
			 	
(-3,-3)	(7,2)		╟╶┆╴┥╴┽╶┝╶┝╶┥╴┽╴┼╶┝╶ ═ ╴┥╴┽╶┝╶┆╴┥╴┼╶┆	
			╟╶╎╴┤╴┼╶├╶├╴┤╴┤╴┼╶├╶ 2 ·┤╴┼╶├╶├┤┤	
			╟╌┼╴┤╴┼╶├╶├╴┽╴┼╶┼╶┼╶┼╶╊╴┤╴╧╶├╶╎╴┥╴┵╸┼	
(-5, 2)	(-3,-3)		╫╶╌╴┐╴╷╴┌╶┝╶┐╴╷╴┌╶╋╴┐╴╷╶┌╶┌╶┤╴╷╴┌	
(•, =)	(0, 0)			
			-iiiiiiiiii	
/= =\	/>		╫╶╎╴┧╴╁╶┟╶┝╶┧╴┧╴╁╶┟╶╉╴┧╴╁╶┟╶╎╴┥╴╁╴┟	
(3, 2)	(5, -2)		╟╶╎╴╣╸┼╶├╶┠╴╣╴╣╸┼╶├╶╋╴╣╸┼╶├╶╎╴┫╸╣╸┼	
			╟╶╎╴┥╴┼╶├╶├╴┥╴┽╴┼╶├╶╋╴┥╴┼╶├╶╎╴┥╴┼╴┼	
			╫╶┆╴┆╴┆╶┟╶┞╶┦╴┆╴┆╶┟╶╊╸┆╴┆╶┆╶┟╶┼	

HORIZONTAL LINES

- 9. Calculate the **slope** of the line between the points $P_1(-2, 4)$ and $P_2(5, 4)$. Write it below showing formula!:
- 10. Try these points too: $P_1(-5, 7)$ and $P_2(2, 7)$

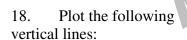
Plot the two points at the left here:

11. Notice the points on the lines above have the same y value. All points on the lines will have the same y-value. The lines are **Horizontal**. Both have a **slope of zero**. So their formula given y=mx + b is just y = b. In other words, y is a constant no matter what the x is! That is a **Horizontal line**!

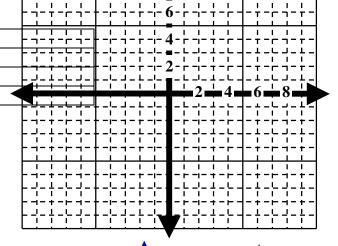

12. The equation for a *horizontal* line is just $y = [a \ constant]$

think of horizon! The horizon is horizontal!

13. Plot the following *horizontal* lines on the graph to the right


a.	y = 8	
b.	y = -2	
c.	y = 3	
d.	y = -7.25	

14. What is the equation for the dotted line?

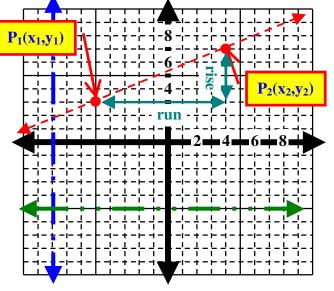


VERTICAL LINES

- 15. What is the slope of the line that contains the points $P_1(-5, -3)$ and $P_2(-5, 7)$?
- 16. In mathematics, you can never get an answer by dividing by zero. (how can you *divide* something into zero bunches??). We say that the operation of dividing by $\mathbf{0}$ is *undefined*. $\frac{3}{0}$ = ? would mean that 0*? = 3. We have no way of having 0 bunches of something that makes 3 total
- 17. The equation for a **Vertical** line is just $\mathbf{x} = [\mathbf{a} \ \mathbf{constant}]$. All points on that vertical line have the same \mathbf{x} value. The \mathbf{x} value never changes for any specific vertical line.

a.	x = -5
b.	$\mathbf{x} = 0$
c.	x = 7
d.	x = -8.25

SUMMARY


$$m = slope = \frac{rise}{run} = \frac{change in y}{change in x} = \frac{(y_2 - y_1)}{(x_2 - x_1)}$$

The slope of the dashed line to the right is

$$m = \frac{(7-3)}{(4-(-5))} = \frac{4}{9} \text{ or } 0.444\overline{4}$$

Horizontal Line at right is: y = -5

Vertical Line at right is: x = -8

THINKING AHEAD - BRAIN TEASERS

Given a line: y = 3x + 2, can you give an equation of a parallel line? (hint: a line that goes the same direction!)

How many different lines are there that are parallel to the one given above (y = 3x + 2)?

What is another way to think about dividing by zero? (hint: can we divide by a number close to zero instead)