MARIN

Name:	 _
Date:	 _

- Show all work. Round all answers to two decimal places. I give the answer to one decimal place so you know if you are likely correct.
- Notes are at the back.

GRADE 11 ESSENTIAL UNIT G – TRIGONOMETRY SINE LAW (w/o Ambiguity)

- Figures are **not necessarily to scale**, believe the numbers, not the sketched diagram.
- 1. Find the unknown side 'x' using the Sine Law.

Gr11Ess_G_SineLawWksht.doc

Ans: x=7.8

	I	R	e	v	is	56	ec	1:	-		-		-			-		-		-			1
L	_	-	_	_	_	_	-	_	-	_	_	_	_	-	_	-	_	-	_	_	_	_	1

1

3. Solve the complete the entire triangle for all the indicated unknown values. You will need to use the sine *and* the cosine law. (remember, if you are given any three measures of any triangle you can figure out all the other measures [except for one case]):

Sine Law

For any triangle ABC, the following relationship between an angle (big Letter) and its opposite side (little letter) is:

- Use the SINE LAW when:
 - two **angles** and one of their opposite sides is known; or
 - two **sides** and one of their opposite angles is known.

Ambiguity with Sine Law

Only occurs when finding an angle

Only occurs when given an angle, an adjacent side, and an opposite side **and** if the opposite side is shorter than the adjacent side.

Selection of Law. If in doubt what law to use, just try one and see if you have enough information. If one law doesn't work the other will.

Cosine Law

Recall also the cosine law you may need on this assignment

 $a^2 = b^2 + c^2 - 2bc * \cos(A)$; provided that $\angle A$ is across from side 'a'.

used when you have:

two sides and an included angle given; or all three sides given