GRADE 12 ESSENTIAL UNIT I - PROBABILITY INTRODUCTION TO PROBABILITY

Name:	
Date:	

PROBABILITY

The **Probability** of an event happening is defined as the number of ways the desired outcome could (or did) happen as a ratio (fraction, percent) with the number of all possible outcomes (or trials).

$$Prob(outcome 'A') = \frac{\# of \ desired \ outcomes 'A'}{Total \# of \ possible \ outcomes}$$

You draw one of the cards without looking (ie: randomly). Write the probability as a reduced fraction and as a percent.

- a. Prob(Janet) = ___/__; ____%
- b. Prob(Jared) = ___/__; ____%
- c. Prob(Juan) = / ; %
- d. Prob(first letter is a \mathbf{J}) =
- e. Prob (first letter is **not** a **J**) =

Cards:

Jared	Janet	Janet
Juan	Juan	Juan

Random means no outcome is favoured. They	Other notation
are all equally	· Prob(J)
	• Brop (~1)

Sample Space. A sample space is a *list of all the possible outcomes* or events! (An event is simply a combination of basic outcomes). Example: list the possible events for the flipping of two coins: a loonie and a quarter; each can come up Head or Tail.

The set of all possible outcomes: $\{(H_1, H_2), (H_1, T_2), (T_1, H_2), (T_1, T_2)\}$

Or since you are only combining two outcomes you *might* do a table:

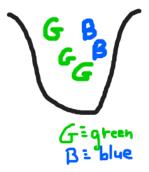
		Loonie	
		Head	Tail
Quarter	Head	(H _I , H _q)	(T_l, H_q)
	Tail	(H_l, T_q)	(T_l, T_q)

Another useful way to generate a more complicated **sample space** is to use an Outcome Tree

You [randomly] draw one of the coloured marbles from the bag. Calculate:

$$Prob(B) = - or \%$$

 $Prob(\overline{B}) = - or \%$
 $Prob(Yellow) = - or \%$



Complementary. Have you noticed that the probability of something **happening** and the probability of it **not happening** adds up to 100%? They are 'complementary' events.

$$Prob(A) + Prob(\overline{A}) = 100\% = 1$$

Or you could say:
$$Prob(\bar{A}) = 1 - Prob(A)$$
;

ie: The probability of something **not** happening is 1 minus the probability it **does** happen! WOW!

Example: If there is a 30% chance of rain today, there is a 70% chance of it **not** raining!

$$Prob(NOT\ Rain) = 100\% - Prob(Rain)$$

 $Prob(NOT\ Rain) = 100\% - 30\% = 70\%$

Manipulate Probability Formula. A company knows that 1% of the bolts that they make are defective. If they produce 250,000 bolts, how many will [likely] be defective?

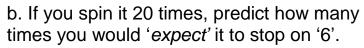
$$Prob(defective) = \frac{\# of \ defectives}{Total \# of \ bolts}$$
$$0.01 = \frac{\# of \ defectives}{250,000}$$

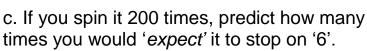
of defectives =
$$0.01 * 250,000 = 2,500$$

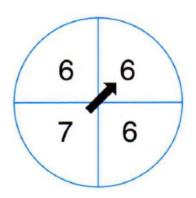
There will be an *expectation* of 2,500 defective bolts. But it may be 2483 or 2532 or somewhere around 2500 plus or minus (±) a few! You only *expect* an average of 2,500 defectives if you select different batches of 250,000 bolts.

You spin the spinner at the right.

a. Calculate the probability it will stop at 'six':_____ or _____% (in theory!)







Experimental vs Theoretical Probability.

They are both the same calculation. But sometimes you do not know the probability of something happening (like flipping a coin); sometimes you have to calculate it *yourself* by doing an 'experiment'. To do a successful experiment you would need to do lots of 'trials'. Flip a paper cup 50 times (ie: 50 trials) and see how often it lands on: the **rim**, the **bottom**, the **side**.

Outcome	Count (tally)	Prob [%]
Rim	12	24%
Bottom	8	16%
Side	30	60%
Total(s)	50	100%

You do your own experiment. Use 50 trials. Calculate your experimental probabilities for flipping a paper cup. Record your results here. Compare with other students, should they not be close to the same result?

Outcome	Count (tally)	Prob [%]
Rim		
Bottom		
Side		
Total(s)	50	100%

Should your experiment and others' not give the exact same result? Explain:

Permutations, Combination, Combinatorics. Notice that to calculate probabilities you need to be able to **count**! *Counting is not all that easy*! We will learn lots of ways to count in **Applied Math** when we study Permutations and Combinations. So to **whet your appetite**, what is the Probability of being dealt four aces in a five card hand?

How many possible poker hands are there? Ans: 2,598,960

(how do I know that!? Wait for Grade 12 Applied!

How many five card poker hands have four aces? **Ans**: 48.

So Prob (4 Aces) =
$$\frac{48}{2,598,960} = \frac{1}{54,145} = 0.000018468 = 0.0018468\%$$

So if you play 54,145 poker hands you *might expect* to win likely once on average. **Or** you could possibly (but improbably) win the very first hand! Heck you could win **twice** in a **row**! One chance in 2,931,681,025 of that happening! **Good Luck**!