MrF

1

GRADE 12 ESSENTIAL	Name:
UNIT C – STATISTICS	Doto:
MEAN, MEDIAN, MODE, RANGE	Date

For the following data give the mean, median, mode and range. Round all answers to nearest 0.01 if necessary unless otherwise indicated. **Show all work**

a. $\{1, 2, 3, 4, 5\}$ $\{\chi, \Im, \Im, \mathcal{A}, \mathcal{B}\}$	b. {1, 2, 3, 4, 5, 6}
Mean: $\overline{X} = \frac{\xi x}{5} = \frac{15}{5} = 3$	Mean:
Median: $\chi^2 = 3$	Median:
Mode(s) (if any): Nic/	Mode(s) (if any):
Range: $\times max - \times min = 4$	Range:
c. {1, 11, 2, 10, 9, 8, 3, 4, 5, 7, 1, 6, 12}	d. {1, 11, 2, 10, 9, 8, 3, 4, 5, 7, 1, 6, 12, 1}

Median:

Mode(s) (if any):

Range:

Mean:

Median:

Mode(s) (if any):

Range:

GR12Ess_C_MeanMedMode.doc

Revised:230424

Show Method 2

e. {2, 5, 8, 18, 14, 8, 12, 3, 1, 1, 1, 3, 4, 4, 8, 8, 7, 6, 5, 8, **145**, 8}

Mean:	Median:	Mode(s) (if any	y): Range:		
Determine the statistics if that 'outlier' <i>145</i> were not there? Without the 'outlier':						
Mean:	Median:	Mode(s) (if any	y): Range:		
f. {2, 2, 2,	2, 2, 2} A unif	orm set	g.	{80, 100, 90, 80, 100}		
Mean: Median:			Mea Med	ın: lian:		
Mode(s) (if an	ıy):		Mod	le(s) (if any):		
Range:			Rang	ge:		
h. {2.1, 3.2 4.5, 25.7}	, 4.5, 4.5, 6.7, 3	3.2, 2.1,	i. 15.6	{15.6, 13.4, 19.2, 19.2, 23.2, 5}		
Mean:			Mea	ın:		
Median:			Med	lian:		
Mode(s) (if an	ny):		Mod	le(s) (if any):		
Range:			Rang	ge:		

Show work! Show method

j. Cassandra did a survey of thirty girls' (sample size 'n' = 30) shoe sizes and got:

6	6	8	9	8	7
6	8	9	9	8	9
5	4	5	6	7	5
8	4	2	8	7	4
4	1	8	10	7	6

Determine the mean, median, and mode of the girls' shoe sizes.

Mean:

Median:

Mode(s) (if any)

1. Monique has to baby sit her eight young cousins this weekend! She wants to get a sense of what type of activities she will need to plan, what toys to assemble. She wants to know the mean, median, mode and range of their ages:

 $\{2, 2, 8, 12, 4, 4, 7, 4\}$

Mean:Median:Mode(s) (if any)Range:

m. Which age is throwing off the mean (ie: what is the outlier data)?

If the 'outlier' was given \$15 and sent to the movies with a friend and the friend's mom, determine the new:

Mean:Median:Mode(s) (if any)Range:

Notice the ages are all closer now to a central value, how close data is to a central number is a measure of its 'spread' or 'dispersion' or 'variability' or 'deviation'. We do not study that in Essential Math but I may show you regardless.

MrF

MrF

n. **Meaning of Mean**. I like to think of mean as the equal share that everyone would get if they shared equally, if everyone was 'average'. If Cassandra had \$12, Monique had \$7, and Casey had \$41 and they all threw their money in a hat and then got an equal share that would be the mean.

Mean (or equal share):

Median:

p. Determine the mean, median, mode, and range of the following:

4	1	2	3	3	3	2	4	5
2	1	3	2	2	3	4	3	1
4	3	4	2	5	1	4	1	1
2	1	2	4	4	3	3	5	3
3	5	1	1	1	5	2	3	2
4	5	4	2	3	1	2	3	5
4	3	4	4	3	3	4	2	2
1	5	1	4	2	4	1	3	1
1	4	2	4	4	4	4	4	3
3	3	3	3	3	4	3	1	3

(It is actually pretty easy if you think about it)(ask for the statistics calculation template!)

q. make a list of 5 numbers where the mean equals the median

r. make a list of 5 numbers where the mean is more than the median

s. make a list of 5 numbers where the mean is less than the median

MrF ⁵

ANSWERS

a. 3, 3, Nil, 4 b. 3,5, 3.5, nil, 5 $\Sigma x = 79, n = 13, 6.08, 6, 1, 11$ c. d. $\Sigma x = 80$, n = 14, mean = 5.71, med = 5.5, mode = 1; range: 11 n=22, $\Sigma x = 279$, mean = 12.68, med = 6.5; mode = 8; range 144 e. n = 21; $\Sigma x = 134$; mean 6.38, med = 6, mode = 8 f. 2, 2, 2, 0 mean:90, med 90, modes: 80 and 100; range =20 g. h. n=9; $\Sigma x = 56.5$; mean 6.28; med 4.5 mode 4.5 ; range 23.6 i. n = 6, $\Sigma x = 106.2$; mean 17.7; med 17.4; mode 19.2 and 15.6; range 9.8 j. n=30; $\Sigma x = 194$; mean 6.47; med 7; mode: 8 1. 5.38; 4; 4; 10 m. 4.43; 4; 4; 6 mean: 20; median12 n. p. 2.878, 3, 3, 4

CENTRAL TENDENCY TEMPLATE FOR LARGE SAMPLES

	Frequency Data Table (to calculate statistics of large samples)					
x	f f*x					
Value of variable being measured	Tally ticks (if doing a survey)	frequency each value happens [count]	acc	f times x		
					Mode; most frequent x:	
					$\frac{\sum (f * x)}{n} =$	
					Median Halfway up the data acc; in between two values if n is EVEN.	
		sum: n =		$sum \\ \Sigma all the f * x's \\ _$		

A frequency data table to record and calculate large samples

*A quick way to find the middle place of a string of numbers is to take (n + 1)/2. That will tell you where the middle place would fall. If the result is a half value then you then you are in between the two places. So in a string of 83 numbers the middle number would be in the 42^{nd} place. In a string of an even number of numbers however, say 180, the middle place would be in the $181 \div 2$ place or the '*ninety and a halfth*' place; so you would need find the mean of the two numbers either side; so the mean of the two numbers in the 90th and the 91st place.